Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
125 result(s) for "Read, Christopher M"
Sort by:
Enthalpy–entropy compensation: the role of solvation
Structural modifications to interacting systems frequently lead to changes in both the enthalpy (heat) and entropy of the process that compensate each other, so that the Gibbs free energy is little changed: a major barrier to the development of lead compounds in drug discovery. The conventional explanation for such enthalpy–entropy compensation (EEC) is that tighter contacts lead to a more negative enthalpy but increased molecular constraints, i.e., a compensating conformational entropy reduction. Changes in solvation can also contribute to EEC but this contribution is infrequently discussed. We review long-established and recent cases of EEC and conclude that the large fluctuations in enthalpy and entropy observed are too great to be a result of only conformational changes and must result, to a considerable degree, from variations in the amounts of water immobilized or released on forming complexes. Two systems exhibiting EEC show a correlation between calorimetric entropies and local mobilities, interpreted to mean conformational control of the binding entropy/free energy. However, a substantial contribution from solvation gives the same effect, as a consequence of a structural link between the amount of bound water and the protein flexibility. Only by assuming substantial changes in solvation—an intrinsically compensatory process—can a more complete understanding of EEC be obtained. Faced with such large, and compensating, changes in the enthalpies and entropies of binding, the best approach to engineering elevated affinities must be through the addition of ionic links, as they generate increased entropy without affecting the enthalpy.
Hydration differences between the major and minor grooves of DNA revealed from heat capacity measurements
The nature of water on the surface of a macromolecule is reflected in the temperature dependence of the heat effect, i.e., the heat capacity change, ΔCp, that accompanies its removal on forming a complex. The relationship between ΔCp and the nature of the surface dehydrated cannot be modeled for DNA by the use of small molecules, as previously done for proteins, since the contiguous surfaces of the grooves cannot be treated as the sum of small component molecules such as nucleotides. An alternative approach is used here in which ΔCp is measured for the formation of several protein/DNA complexes and the calculated contribution from protein dehydration subtracted to yield the heat capacity change attributable to dehydration of the DNA. The polar and apolar surface areas of the DNA dehydrated on complex formation were calculated from the known structures of the complexes, allowing heat capacity coefficients to be derived representing dehydration of unit surface area of polar and apolar surface in both grooves. Dehydration of apolar surfaces in both grooves is essentially identical and accompanied by a reduction in ΔCp by about 3 J K−1 mol−1 (Å2)−1, a value of somewhat greater magnitude than observed for proteins {ΔCp = − 1.79 J K−1 mol−1 (Å2)−1}. In contrast, dehydration of polar surfaces is very different in the two grooves: in the minor groove ΔCp increases by 2.7 J K−1 mol−1 (Å2)−1, but in the major groove, although ΔCp is also positive, it is low in value: + 0.4 J K−1 mol−1 (Å2)−1. Physical explanations for the magnitudes of ΔCp are discussed.
GAGA over the nucleosome
The solutiuon structure of the GAGA DMA-binding domain reveals an N-terminally extended zinc finger structure which wraps around one turn of the DNA, a result which helps to set limits on the mechanism of nucleosome remodelling.
Heat shock protein 90 inhibition by 17-DMAG lessens disease in the MRL/Ipr mouse model of systemic lupus erythematosus
Elevated expression of heat shock protein 90 (HSP90) has been found in kidneys and serum of systemic lupus erythematosus (SLE) patients and MRLIMp-FasIprIFasJpr(MRLIIpr) autoimmune mice. We investigated if inhibition of HSP90 would reduce disease in MRL/ Ipr mice. In vitro, pretreatment of mesangial cells with HSP90 inhibitor Geldanamycin prior to immune-stimulation showed reduced expression of IL-6, IL-12 and NO. In vivo, we found HSP90 expression was elevated in MRL/Ipr kidneys when compared to C57BL/6 mice and MRIJIpr mice treated with HSP90 inhibitor 17-DMAG. MRIJIpr mice treated with 17-DMAG showed decreased proteinuria and reduced serum anti-dsDNA antibody production. Glomerulonephritis and glomerular IgG and C3 were not significantly affected by administration of 17-DMAG in MRIJIpr. 17-DMAG increased CD8+ T cells, reduced double-negative T cells, decreased the CD4/CD8 ratio and reduced follicular B cells. These studies suggest that HSP90 may play a role in regulating T-cell differentiation and activation and that HSP90 inhibition may reduce inflammation in lupus.
Cell-free DNA captures tumor heterogeneity and driver alterations in rapid autopsies with pre-treated metastatic cancer
In patients with metastatic cancer, spatial heterogeneity of somatic alterations may lead to incomplete assessment of a cancer’s mutational profile when analyzing a single tumor biopsy. In this study, we perform sequencing of cell-free DNA (cfDNA) and distinct metastatic tissue samples from ten rapid autopsy cases with pre-treated metastatic cancer. We show that levels of heterogeneity in genetic biomarkers vary between patients but that gene expression signatures representative of the tumor microenvironment are more consistent. Across nine patients with plasma samples available, we are able to detect 62/62 truncal and 47/121 non-truncal point mutations in cfDNA. We observe that mutation clonality in cfDNA is correlated with the number of metastatic lesions in which the mutation is detected and use this result to derive a clonality threshold to classify truncal and non-truncal driver alterations with reasonable specificity. In contrast, mutation truncality is more often incorrectly assigned when studying single tissue samples. Our results demonstrate the utility of a single cfDNA sample relative to that of single tissue samples when treating patients with metastatic cancer. It is currently unclear if cell-free DNA samples from metastatic cancers are as informative as tissue ones for cancer profiling. Here the authors show that cell-free DNA samples from rapid autopsies capture clonal and subclonal alterations of metastatic tumours and reveal more driver alterations than single tissue samples.
Participant perceptions and experiences of a novel community-based respiratory longitudinal sampling method in Liverpool, UK: A mixed methods feasibility study
Longitudinal, community-based sampling is important for understanding prevalence and transmission of respiratory pathogens. Using a minimally invasive sampling method, the FAMILY Micro study monitored the oral, nasal and hand microbiota of families for 6 months. Here, we explore participant experiences and opinions. A mixed methods approach was utilised. A quantitative questionnaire was completed after every sampling timepoint to report levels of discomfort and pain, as well as time taken to collect samples. Participants were also invited to discuss their experiences in a qualitative structured exit interview. We received questionnaires from 36 families. Most adults and children >5y experienced no pain (94% and 70%) and little discomfort (73% and 47% no discomfort) regardless of sample type, whereas children ≤5y experienced variable levels of pain and discomfort (48% no pain but 14% hurts even more, whole lot or worst; 38% no discomfort but 33% moderate, severe, or extreme discomfort). The time taken for saliva and hand sampling decreased over the study. We conducted interviews with 24 families. Families found the sampling method straightforward, and adults and children >5y preferred nasal sampling using a synthetic absorptive matrix over nasopharyngeal swabs. It remained challenging for families to fit sampling into their busy schedules. Adequate fridge/freezer space and regular sample pick-ups were found to be important factors for feasibility. Messaging apps proved extremely effective for engaging with participants. Our findings provide key information to inform the design of future studies, specifically that self-sampling at home using minimally invasive procedures is feasible in a family context.
Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study
AbstractObjectiveTo characterise the clinical features of patients admitted to hospital with coronavirus disease 2019 (covid-19) in the United Kingdom during the growth phase of the first wave of this outbreak who were enrolled in the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) World Health Organization (WHO) Clinical Characterisation Protocol UK (CCP-UK) study, and to explore risk factors associated with mortality in hospital.DesignProspective observational cohort study with rapid data gathering and near real time analysis.Setting208 acute care hospitals in England, Wales, and Scotland between 6 February and 19 April 2020. A case report form developed by ISARIC and WHO was used to collect clinical data. A minimal follow-up time of two weeks (to 3 May 2020) allowed most patients to complete their hospital admission.Participants20 133 hospital inpatients with covid-19.Main outcome measuresAdmission to critical care (high dependency unit or intensive care unit) and mortality in hospital.ResultsThe median age of patients admitted to hospital with covid-19, or with a diagnosis of covid-19 made in hospital, was 73 years (interquartile range 58-82, range 0-104). More men were admitted than women (men 60%, n=12 068; women 40%, n=8065). The median duration of symptoms before admission was 4 days (interquartile range 1-8). The commonest comorbidities were chronic cardiac disease (31%, 5469/17 702), uncomplicated diabetes (21%, 3650/17 599), non-asthmatic chronic pulmonary disease (18%, 3128/17 634), and chronic kidney disease (16%, 2830/17 506); 23% (4161/18 525) had no reported major comorbidity. Overall, 41% (8199/20 133) of patients were discharged alive, 26% (5165/20 133) died, and 34% (6769/20 133) continued to receive care at the reporting date. 17% (3001/18 183) required admission to high dependency or intensive care units; of these, 28% (826/3001) were discharged alive, 32% (958/3001) died, and 41% (1217/3001) continued to receive care at the reporting date. Of those receiving mechanical ventilation, 17% (276/1658) were discharged alive, 37% (618/1658) died, and 46% (764/1658) remained in hospital. Increasing age, male sex, and comorbidities including chronic cardiac disease, non-asthmatic chronic pulmonary disease, chronic kidney disease, liver disease and obesity were associated with higher mortality in hospital.ConclusionsISARIC WHO CCP-UK is a large prospective cohort study of patients in hospital with covid-19. The study continues to enrol at the time of this report. In study participants, mortality was high, independent risk factors were increasing age, male sex, and chronic comorbidity, including obesity. This study has shown the importance of pandemic preparedness and the need to maintain readiness to launch research studies in response to outbreaks.Study registrationISRCTN66726260.
Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers
In vaccine design, antigens are often arrayed in a multivalent nanoparticle form, but in vivo mechanisms underlying the enhanced immunity elicited by such vaccines remain poorly understood. We compared the fates of two different heavily glycosylated HIV antigens, a gp120-derived mini-protein and a large, stabilized envelope trimer, in protein nanoparticle or “free” forms after primary immunization. Unlike monomeric antigens, nanoparticles were rapidly shuttled to the follicular dendritic cell (FDC) network and then concentrated in germinal centers in a complement-, mannose-binding lectin (MBL)–, and immunogen glycan–dependent manner. Loss of FDC localization in MBL-deficient mice or via immunogen deglycosylation significantly affected antibody responses. These findings identify an innate immune–mediated recognition pathway promoting antibody responses to particulate antigens, with broad implications for humoral immunity and vaccine design.
Control of lupus nephritis by changes of gut microbiota
Background Systemic lupus erythematosus, characterized by persistent inflammation, is a complex autoimmune disorder with no known cure. Immunosuppressants used in treatment put patients at a higher risk of infections. New knowledge of disease modulators, such as symbiotic bacteria, can enable fine-tuning of parts of the immune system, rather than suppressing it altogether. Results Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Here we report a role of gut microbiota in the pathogenesis of renal dysfunction in lupus. Using a classical model of lupus nephritis, MRL/ lpr , we found a marked depletion of Lactobacillales in the gut microbiota. Increasing Lactobacillales in the gut improved renal function of these mice and prolonged their survival. We used a mixture of 5 Lactobacillus strains ( Lactobacillus oris , Lactobacillus rhamnosus , Lactobacillus reuteri , Lactobacillus johnsonii , and Lactobacillus gasseri ), but L. reuteri and an uncultured Lactobacillus sp. accounted for most of the observed effects. Further studies revealed that MRL/ lpr mice possessed a “leaky” gut, which was reversed by increased Lactobacillus colonization. Lactobacillus treatment contributed to an anti-inflammatory environment by decreasing IL-6 and increasing IL-10 production in the gut. In the circulation, Lactobacillus treatment increased IL-10 and decreased IgG2a that is considered to be a major immune deposit in the kidney of MRL/ lpr mice. Inside the kidney, Lactobacillus treatment also skewed the Treg-Th17 balance towards a Treg phenotype. These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner. Conclusions This work demonstrates essential mechanisms on how changes of the gut microbiota regulate lupus-associated immune responses in mice. Future studies are warranted to determine if these results can be replicated in human subjects.
Outcomes of Resistance-guided Sequential Treatment of Mycoplasma genitalium Infections
Treating Mycoplasma genitalium with a sequence of first doxycycline to reduce bacterial load, and then using a resistance assay to choose either high-dose azithromycin or sitafloxacin, cured >92% of infections in a population with high levels of antibiotic resistance. Abstract Background Rising macrolide and quinolone resistance in Mycoplasma genitalium necessitate new treatment approaches. We evaluated outcomes of sequential antimicrobial therapy for M. genitalium guided by a macrolide-resistance assay. Methods In mid-2016, Melbourne Sexual Health Centre switched from azithromycin to doxycycline (100 mg twice daily for 7 days) for nongonococcal urethritis, cervicitis, and proctitis. Cases were tested for M. genitalium and macrolide-resistance mutations (MRMs) by polymerase chain reaction. Directly after doxycycline, MRM-negative infections received 2.5 g azithromycin (1 g, then 500 mg daily for 3 days), and MRM-positive infections received sitafloxacin (100 mg twice daily for 7 days). Assessment of test of cure and reinfection risk occurred 14-90 days after the second antibiotic. Results Of 244 evaluable M. genitalium infections (52 women, 68 heterosexual men, 124 men who have sex with men) diagnosed from 20 June 2016 to 15 May 2017, MRMs were detected in 167 (68.4% [95% confidence interval {CI}, 62.2%-74.2%]). Treatment with doxycycline decreased bacterial load by a mean 2.60 log10 (n = 56; P < .0001). Microbiologic cure occurred in 73 of 77 MRM-negative infections (94.8% [95% CI, 87.2%-98.6%]) and in 154 of 167 MRM-positive infections (92.2% [95% CI, 87.1%-95.8%]). Selection of macrolide resistance occurred in only 2 of 76 (2.6% [95% CI, .3%-9.2%]) macrolide-susceptible infections. Conclusions In the context of high levels of antimicrobial resistance, switching from azithromycin to doxycycline for presumptive treatment of M. genitalium, followed by resistance-guided therapy, cured ≥92% of infections, with infrequent selection of macrolide resistance.