Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
195
result(s) for
"Reddy, Gautam"
Sort by:
Global epistasis emerges from a generic model of a complex trait
2021
Epistasis between mutations can make adaptation contingent on evolutionary history. Yet despite widespread ‘microscopic’ epistasis between the mutations involved, microbial evolution experiments show consistent patterns of fitness increase between replicate lines. Recent work shows that this consistency is driven in part by global patterns of diminishing-returns and increasing-costs epistasis, which make mutations systematically less beneficial (or more deleterious) on fitter genetic backgrounds. However, the origin of this ‘global’ epistasis remains unknown. Here, we show that diminishing-returns and increasing-costs epistasis emerge generically as a consequence of pervasive microscopic epistasis. Our model predicts a specific quantitative relationship between the magnitude of global epistasis and the stochastic effects of microscopic epistasis, which we confirm by reanalyzing existing data. We further show that the distribution of fitness effects takes on a universal form when epistasis is widespread and introduce a novel fitness landscape model to show how phenotypic evolution can be repeatable despite sequence-level stochasticity.
Journal Article
Learning to soar in turbulent environments
by
Sejnowski, Terrence J.
,
Reddy, Gautam
,
Vergassola, Massimo
in
Algorithms
,
Atmospheric boundary layer
,
Biological Sciences
2016
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments.
Journal Article
Epistasis and evolution: recent advances and an outlook for prediction
2023
As organisms evolve, the effects of mutations change as a result of epistatic interactions with other mutations accumulated along the line of descent. This can lead to shifts in adaptability or robustness that ultimately shape subsequent evolution. Here, we review recent advances in measuring, modeling, and predicting epistasis along evolutionary trajectories, both in microbial cells and single proteins. We focus on simple patterns of global epistasis that emerge in this data, in which the effects of mutations can be predicted by a small number of variables. The emergence of these patterns offers promise for efforts to model epistasis and predict evolution.
Journal Article
Reconciling time and prediction error theories of associative learning
2025
Learning involves forming associations between sensory events that have a consistent temporal relationship. Influential theories based on prediction errors explain numerous behavioral and neurobiological observations but do not account for how animals measure the passage of time. Here, we propose a theory for temporal causal learning, where the structure of inter-stimulus intervals is used to infer the singular cause of a rewarding stimulus. We show that a single assumption of timescale invariance, formulated as an hierarchical generative model, is sufficient to explain a puzzling set of learning phenomena, including the power-law dependence of acquisition on inter-trial intervals and timescale invariance in response profiles. A biologically plausible algorithm for inference recapitulates salient aspects of both timing and prediction error theories. The theory predicts neural signals with distinct dynamics that encode causal associations and temporal structure.
Animals learn associations between events across time, but prediction-error theories do not account for how time between events is tracked. Here, the authors show that timescale-invariant temporal inference explains behavioral data and neural signals of learning.
Journal Article
Antagonistic odor interactions in olfactory sensory neurons are widespread in freely breathing mice
by
Reddy, Gautam
,
Murthy, Venkatesh N.
,
Vergassola, Massimo
in
14/69
,
631/378/2624/2625
,
631/378/3917
2020
Odor landscapes contain complex blends of molecules that each activate unique, overlapping populations of olfactory sensory neurons (OSNs). Despite the presence of hundreds of OSN subtypes in many animals, the overlapping nature of odor inputs may lead to saturation of neural responses at the early stages of stimulus encoding. Information loss due to saturation could be mitigated by normalizing mechanisms such as antagonism at the level of receptor-ligand interactions, whose existence and prevalence remains uncertain. By imaging OSN axon terminals in olfactory bulb glomeruli as well as OSN cell bodies within the olfactory epithelium in freely breathing mice, we find widespread antagonistic interactions in binary odor mixtures. In complex mixtures of up to 12 odorants, antagonistic interactions are stronger and more prevalent with increasing mixture complexity. Therefore, antagonism is a common feature of odor mixture encoding in OSNs and helps in normalizing activity to reduce saturation and increase information transfer.
Odor blends contain molecules that activate unique, overlapping populations of sensory neurons (OSNs). Here, by imaging OSN axon terminals, as well as their cell bodies within the olfactory epithelium, the authors find widespread antagonistic interactions in binary and complex odor mixtures.
Journal Article
Distinct information conveyed to the olfactory bulb by feedforward input from the nose and feedback from the cortex
by
Reddy, Gautam
,
Murthy, Venkatesh N.
,
Zak, Joseph D.
in
14/69
,
631/378/2624/1704
,
631/378/3917
2024
Sensory systems are organized hierarchically, but feedback projections frequently disrupt this order. In the olfactory bulb (OB), cortical feedback projections numerically match sensory inputs. To unravel information carried by these two streams, we imaged the activity of olfactory sensory neurons (OSNs) and cortical axons in the mouse OB using calcium indicators, multiphoton microscopy, and diverse olfactory stimuli. Here, we show that odorant mixtures of increasing complexity evoke progressively denser OSN activity, yet cortical feedback activity is of similar sparsity for all stimuli. Also, representations of complex mixtures are similar in OSNs but are decorrelated in cortical axons. While OSN responses to increasing odorant concentrations exhibit a sigmoidal relationship, cortical axonal responses are complex and nonmonotonic, which can be explained by a model with activity-dependent feedback inhibition in the cortex. Our study indicates that early-stage olfactory circuits have access to local feedforward signals and global, efficiently formatted information about odor scenes through cortical feedback.
How the feedforward information from the nose and feedback from the cortex interact in the olfactory bulb is not fully understood. Here, by imaging olfactory sensory neurons and cortical projections to the olfactory bulb, the authors show that sensory transformations contained within both streams.
Journal Article
A lexical approach for identifying behavioural action sequences
2022
Animals display characteristic behavioural patterns when performing a task, such as the spiraling of a soaring bird or the surge-and-cast of a male moth searching for a female. Identifying such recurring sequences occurring rarely in noisy behavioural data is key to understanding the behavioural response to a distributed stimulus in unrestrained animals. Existing models seek to describe the dynamics of behaviour or segment individual locomotor episodes rather than to identify the rare and transient sequences of locomotor episodes that make up the behavioural response. To fill this gap, we develop a lexical, hierarchical model of behaviour. We designed an unsupervised algorithm called “BASS” to efficiently identify and segment recurring behavioural action sequences transiently occurring in long behavioural recordings. When applied to navigating larval zebrafish, BASS extracts a dictionary of remarkably long, non-Markovian sequences consisting of repeats and mixtures of slow forward and turn bouts. Applied to a novel chemotaxis assay, BASS uncovers chemotactic strategies deployed by zebrafish to avoid aversive cues consisting of sequences of fast large-angle turns and burst swims. In a simulated dataset of soaring gliders climbing thermals, BASS finds the spiraling patterns characteristic of soaring behaviour. In both cases, BASS succeeds in identifying rare action sequences in the behaviour deployed by freely moving animals. BASS can be easily incorporated into the pipelines of existing behavioural analyses across diverse species, and even more broadly used as a generic algorithm for pattern recognition in low-dimensional sequential data.
Journal Article
Adaptive algorithms for shaping behavior
by
Tong, William L.
,
Murthy, Venkatesh N.
,
Reddy, Gautam
in
Adaptive Algorithms
,
Agents (artificial intelligence)
,
Algorithms
2025
Dogs and laboratory mice are commonly trained to perform complex tasks by guiding them through a curriculum of simpler tasks (‘shaping’). What are the principles behind effective shaping strategies? Here, we propose a teacher-student framework for shaping behavior, where an autonomous teacher agent decides its student’s task based on the student’s transcript of successes and failures on previously assigned tasks. Using algorithms for Monte Carlo planning under uncertainty, we show that near-optimal shaping algorithms achieve a careful balance between reinforcement and extinction. Near-optimal algorithms track learning rate to adaptively alternate between simpler and harder tasks. Based on this intuition, we derive an adaptive shaping heuristic with minimal parameters, which we show is near-optimal on a sequence learning task and robustly trains deep reinforcement learning agents on navigation tasks that involve sparse, delayed rewards. Extensions to continuous curricula are explored. Our work provides a starting point towards a general computational framework for shaping behavior that applies to both animals and artificial agents.
Journal Article
Antagonism in olfactory receptor neurons and its implications for the perception of odor mixtures
by
Reddy, Gautam
,
Vergassola, Massimo
,
Murthy, Venkatesh N
in
Action Potentials
,
Aroma compounds
,
Computational and Systems Biology
2018
Natural environments feature mixtures of odorants of diverse quantities, qualities and complexities. Olfactory receptor neurons (ORNs) are the first layer in the sensory pathway and transmit the olfactory signal to higher regions of the brain. Yet, the response of ORNs to mixtures is strongly non-additive, and exhibits antagonistic interactions among odorants. Here, we model the processing of mixtures by mammalian ORNs, focusing on the role of inhibitory mechanisms. We show how antagonism leads to an effective ‘normalization’ of the ensemble ORN response, that is, the distribution of responses of the ORN population induced by any mixture is largely independent of the number of components in the mixture. This property arises from a novel mechanism involving the distinct statistical properties of receptor binding and activation, without any recurrent neuronal circuitry. Normalization allows our encoding model to outperform non-interacting models in odor discrimination tasks, leads to experimentally testable predictions and explains several psychophysical experiments in humans.
When ordering in a coffee shop, you probably recognize and enjoy the aroma of freshly roasted coffee beans. But as well as coffee, you can also smell the croissants behind the counter and maybe even the perfume or cologne of the person next to you. Each of these scents consists of a collection of chemicals, or odorants. To distinguish between the aroma of coffee and that of croissants, your brain must group the odorants appropriately and then keep the groups separate from each other.
This is not a trivial task. Odorants bind to proteins called odorant receptors found on the surface of cells in the nose called olfactory receptor neurons. But each odorant does not have its own dedicated receptor. Instead, a single odorant will bind to multiple types of odorant receptors, and thus, each olfactory receptor neuron may respond to multiple odorants. So how does the brain encode mixtures of odorants in a way that allows us to distinguish one aroma from another?
Reddy, Zak et al. have developed a computational model to explain how this process works. The model assumes that an odorant triggers a response in an olfactory receptor neuron via two steps. First, the odorant binds to an odorant receptor. Second, the bound odorant activates the receptor. But the odorant that binds most strongly to a receptor will not necessarily be the odorant that is best at activating that receptor.
This allows a phenomenon called competitive antagonism to occur. This is when one odorant in a mixture binds more strongly to a receptor than the other odorants, but only weakly activates that receptor. In so doing, the strongly bound odorant prevents the other odorants from binding to and activating the receptor. This helps tame the dominating influence of background odors, which might otherwise saturate the responses of individual olfactory receptor neurons.
Reddy, Zak et al. show that processes such as competitive antagonism enable olfactory receptor neurons to encode all of the odors within a mixture. The model can explain various phenomena observed in experiments and it adds to our understanding of how the brain generates our sense of smell. The model may also be relevant to other biological systems that must filter weak signals from a dominant background. These include the immune system, which must distinguish a small set of foreign proteins from the much larger number of proteins that make up our bodies.
Journal Article
Alternation emerges as a multi-modal strategy for turbulent odor navigation
2022
Foraging mammals exhibit a familiar yet poorly characterized phenomenon, ‘alternation’, a pause to sniff in the air preceded by the animal rearing on its hind legs or raising its head. Rodents spontaneously alternate in the presence of airflow, suggesting that alternation serves an important role during plume-tracking. To test this hypothesis, we combine fully resolved simulations of turbulent odor transport and Bellman optimization methods for decision-making under partial observability. We show that an agent trained to minimize search time in a realistic odor plume exhibits extensive alternation together with the characteristic cast-and-surge behavior observed in insects. Alternation is linked with casting and occurs more frequently far downwind of the source, where the likelihood of detecting airborne cues is higher relative to ground cues. Casting and alternation emerge as complementary tools for effective exploration with sparse cues. A model based on marginal value theory captures the interplay between casting, surging, and alternation.
Journal Article