Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
124
result(s) for
"Rehder, G."
Sort by:
Monitoring marine carbon dioxide removal: quantitative analysis of indicators for carbon removed and environmental side-effects
2025
Marine carbon dioxide removal (mCDR) implementations can potentially remove 1–15 Gt CO2 yr−1, which encompasses the minimum requirement removal of CDR in 2050 to limit warming below 2 °C by 2100. Despite their potential, mCDR represents only a tiny fraction of currently deployed CDR methods. Their implementations require not only a comprehensive understanding of the marine processes involved, but also a robust monitoring for their effectiveness and potential environmental impacts. In this work, we surveyed the mCDR scientific literature to identify measurable indicators for quantitative information across different ecosystems and methods used for monitoring the carbon removed and environmental side-effects, and explore the main common challenges. We followed the preferred reporting items for systematic reviews and meta-analysis protocol PRISMA: the search queries were established, and the literature search and criteria for inclusion/exclusion were transparently defined. Our results reveal the lack of a direct linkage from the mCDR-induced rates of chemical and biological changes to the amount of carbon removed from the atmosphere and the magnitude of associated environmental side-effects. The heterogeneity of marine biogeochemical and ecological processes in time and space, together with the propagation of biogeochemical signals in an open system, represent the most common challenge reported for the monitoring approaches. Our results show that we are in need of indicators that provide reliable quantification of CO2 removal rates and information on environmental side-effects. Finally, based on our gap analysis, we provide monitoring recommendations, such as the use of common metrics and the baseline establishment. Currently, the lack of standardized indicators and monitoring procedures inhibits the verification, and hence, creates risks for further investment and prevents the entering of mCDRs in existing carbon certificate trading systems, hindering the long term growth of this sector.
Journal Article
Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon
by
Aleynik, D.
,
Çagatay, M. N.
,
Mazlumyan, S.
in
Analysis
,
Anthropogenic factors
,
Aquatic environment
2014
In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX (\"In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies\", http://www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
Journal Article
One year of continuous measurements constraining methane emissions from the Baltic Sea to the atmosphere using a ship of opportunity
by
Gülzow, W.
,
Schneider v. Deimling, J.
,
Seifert, T.
in
Atmosphere
,
Carbon dioxide
,
Comparative analysis
2013
Methane and carbon dioxide were measured with an autonomous and continuous running system on a ferry line crossing the Baltic Sea on a 2–3 day interval from the Mecklenburg Bight to the Gulf of Finland in 2010. Surface methane saturations show great seasonal differences in shallow regions like the Mecklenburg Bight (103–507%) compared to deeper regions like the Gotland Basin (96–161%). The influence of controlling parameters like temperature, wind, mixing depth and processes like upwelling, mixing of the water column and sedimentary methane emissions on methane oversaturation and emission to the atmosphere are investigated. Upwelling was found to influence methane surface concentrations in the area of Gotland significantly during the summer period. In February 2010, an event of elevated methane concentrations in the surface water and water column of the Arkona Basin was observed, which could be linked to a wind-derived water level change as a potential triggering mechanism. The Baltic Sea is a source of methane to the atmosphere throughout the year, with highest fluxes occurring during the winter season. Stratification was found to promote the formation of a methane reservoir in deeper regions like Gulf of Finland or Bornholm Basin, which leads to long lasting elevated methane concentrations and enhanced methane fluxes, when mixed to the surface during mixed layer deepening in autumn and winter. Methane concentrations and fluxes from shallow regions like the Mecklenburg Bight are predominantly controlled by sedimentary production and consumption of methane, wind events and the change in temperature-dependent solubility of methane in the surface water. Methane fluxes vary significantly in shallow regions (e.g. Mecklenburg Bight) and regions with a temporal stratification (e.g. Bornholm Basin, Gulf of Finland). On the contrary, areas with a permanent stratification like the Gotland Basin show only small seasonal fluctuations in methane fluxes.
Journal Article
Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea)
by
Jakobs, G.
,
Kießlich, K.
,
Rehder, G.
in
Anoxic conditions
,
Comparative analysis
,
Comparative studies
2013
Pelagic methane oxidation was investigated in dependence on differing hydrographic conditions within the redox zone of the Gotland Deep (GD) and Landsort Deep (LD), central Baltic Sea. The redox zone of both deeps, which indicates the transition between oxic and anoxic conditions, was characterized by a pronounced methane concentration gradient between the deep water (GD: 1233 nM, 223 m; LD: 2935 nM, 422 m) and the surface water (GD and LD < 10 nM). This gradient together with a 13C CH4 enrichment (δ13C CH4 deep water: GD −84‰, LD −71‰; redox zone: GD −60‰, LD −20‰; surface water: GD −47‰, LD −50‰; δ13C CH4 vs. Vienna Pee Dee Belemnite standard), clearly indicating microbial methane consumption within the redox zone. Expression analysis of the methane monooxygenase identified one active type I methanotrophic bacterium in both redox zones. In contrast, the turnover of methane within the redox zones showed strong differences between the two basins (GD: max. 0.12 nM d−1, LD: max. 0.61 nM d−1), with a nearly four-times-lower turnover time of methane in the LD (GD: 455 d, LD: 127 d). Vertical mixing rates for both deeps were calculated on the base of the methane concentration profile and the consumption of methane in the redox zone (GD: 2.5 × 10–6 m2 s−1, LD: 1.6 × 10–5 m2 s−1). Our study identified vertical transport of methane from the deep-water body towards the redox zone as well as differing hydrographic conditions (lateral intrusions and vertical mixing) within the redox zone of these deeps as major factors that determine the pelagic methane oxidation.
Journal Article
Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation
by
Duarte, R. M. T.
,
Sartoratto, A.
,
Höfling, J. F.
in
Allium tuberosum
,
Antimicrobial agents
,
Biofilms
2011
The efficacy of extracts and essential oils from Allium tuberosum, Coriandrum sativum, Cymbopogon martini, Cymbopogon winterianus, and Santolina chamaecyparissus was evaluated against Candida spp. isolates from the oral cavity of patients with periodontal disease. The most active oil was fractionated and tested against C. albicans biofilm formation. The oils were obtained by water-distillation and the extracts were prepared with macerated dried plant material. The Minimal Inhibitory Concentration—MIC was determined by the microdilution method. Chemical characterization of oil constituents was performed using Gas Chromatography and Mass Spectrometry (GC-MS). C. sativum activity oil upon cell and biofilm morphology was evaluated by Scanning Electron Microscopy (SEM). The best activities against planktonic Candida spp. were observed for the essential oil and the grouped F8–10 fractions from C. sativum. The crude oil also affected the biofilm formation in C. albicans causing a decrease in the biofilm growth. Chemical analysis of the F8–10 fractions detected as major active compounds, 2-hexen-1-ol, 3-hexen-1-ol and cyclodecane. Standards of these compounds tested grouped provided a stronger activity than the oil suggesting a synergistic action from the major oil constituents. The activity of C. sativum oil demonstrates its potential for a new natural antifungal formulation.
Journal Article
Aerobic methanotrophy within the pelagic redox-zone of the Gotland Deep (central Baltic Sea)
2012
Water column samples taken in summer 2008 from the stratified Gotland Deep (central Baltic Sea) showed a strong gradient in dissolved methane concentrations from high values in the saline deep water (max. 504 nM) to low concentrations in the less dense, brackish surface water (about 4 nM). The steep methane-gradient (between 115 and 135 m water depth) within the redox-zone, which separates the anoxic deep part from the oxygenated surface water (oxygen concentration 0–0.8 mL L−1), implies a methane consumption rate of 0.28 nM d−1. The process of microbial methane oxidation within this zone was evident by a shift of the stable carbon isotope ratio of methane between the bottom water (δ13C CH4 = −82.4‰ and the redox-zone (δ13C CH4 = −38.7‰. Water column samples between 80 and 119 m were studied to identify the microorganisms responsible for the methane turnover in that depth interval. Notably, methane monooxygenase gene expression analyses for water depths covering the whole redox-zone demonstrated that accordant methanotrophic activity was probably due to only one phylotype of the aerobic type I methanotrophic bacteria. An imprint of these organisms on the particular organic matter was revealed by distinctive lipid biomarkers showing bacteriohopanepolyols and lipid fatty acids characteristic for aerobic type I methanotrophs (e.g., 35-aminobacteriohopane-30,31,32,33,34-pentol), corroborating their role in aerobic methane oxidation in the redox-zone of the central Baltic Sea.
Journal Article
Distribution of methane in the water column of the Baltic Sea
by
Gülzow, W.
,
Nausch, G.
,
Schneider von Deimling, J.
in
Baltic Sea
,
Basins
,
Biological oceanography
2010
The distribution of dissolved methane in the water column of the Baltic Sea was extensively investigated. A strong correlation between the vertical density stratification, the distribution of oxygen, hydrogen sulfide, and methane has been identified. A widespread release of methane from the seafloor is indicated by increasing methane concentrations with water depth. The deep basins in the central Baltic Sea show the strongest methane enrichments in stagnant anoxic water bodies (max. 1086 nM and 504 nM, respectively), with a pronounced decrease towards the pelagic redoxcline and slightly elevated surface water concentrations (saturation values of 206% and 120%, respectively). In general the more limnic basins in the northern part of the Baltic are characterized by lower water column methane concentrations and surface water saturation values close to the atmospheric equilibrium (between 106% and 116%). In contrast, the shallow Western Baltic Sea is characterized by high saturation values up to 746%.
Journal Article
Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil
by
Sartoratto, Adilson(Universidade Estadual de Campinas Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas)
,
Machado, Ana Lúcia M.(Universidade Estadual de Campinas Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas)
,
Duarte, Marta Cristina T.(Universidade Estadual de Campinas Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas)
in
Aloysia triphylla
,
antimicrobial activity
,
atividade antimicrobiana
2004
Essential oils from aerial parts of Mentha piperita, M. spicata, Thymus vulgaris, Origanum vulgare, O. applii, Aloysia triphylla, Ocimum gratissimum, O. basilicum were obtained by steam destillation using a Clevenger-type system. These oils were screened for antibacterial and anti-Candida albicans activity using bioautographic method. Subsequently, minimal inhibitory concentration from oils was determined by microdilution method. Most essential oil studied were effective against Enterococcus faecium and Salmonella cholerasuis. Aloysia triphylla and O. basilicum presented moderate inhibition against Staphylococcus aureus while only A. tryphila and M. piperita were able to control the yeast Candida albicans. The oils were analyzed by GC and GC-MS techniques in order to determine the majoritary compounds.
Óleos essenciais foram obtidos a partir das partes aéreas de Mentha piperita, M. spicata, Thymus vulgaris, Origanum vulgare, O. applii, Aloysia triphylla, Ocimum gratissimum e O. basilicum através de arraste de vapor em sistema tipo Clevenger. Os óleos foram avaliados quanto à atividade antimicrobiana contra bactérias e contra a levedura Candida albicans pelo método de bioautografia. A concentração mínima inibitória dos óleos com atividade positiva foi em seguida determinada pelo método da microdiluição. De acordo com os resultados, a maioria dos óleos essenciais estudados foram efetivos contra Enterococcus faecium e Salmonella cholerasuis. A.triphylla e O. basilicum apresentaram inibição moderada contra Staphylococcus aureus enquanto apenas A. tryphila e M. piperita foram capazes de inibir a levedura Candida albicans. Os óleos foram analisados quimicamente por técnicas de CG e CG-EM de modo a determinar os compostos majoritários presentes.
Journal Article
Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2) – implementation and budget estimates
2022
Marine biogeochemical models based on Redfield stoichiometry suffer from underestimating carbon fixation by primary production. The most pronounced indication of this is the overestimation of the dissolved inorganic carbon (DIC) concentration and, consequently, the partial pressure of carbon dioxide in surface waters. The reduced production of organic carbon will impact most biogeochemical processes.We propose a marine biogeochemical model allowing for a non-Redfieldian carbon fixation. The updated model is able to reproduce observed partial pressure of carbon dioxide and other variables of the ecosystem, like nutrients and oxygen, reasonably well. The additional carbon uptake is realized in the model by an extracellular release (ER) of dissolved organic matter (DOM) from phytoplankton. Dissolved organic matter is subject to flocculation and the sinking particles remove carbon from surface waters. This approach is mechanistically different from existing non-Redfieldian models which allow for flexible elemental ratios for the living cells of the phytoplankton itself. The performance of the model is demonstrated as an example for the Baltic Sea. We have chosen this approach because of a reduced computational effort which is beneficial for large-scale and long-term model simulations.Budget estimates for carbon illustrate that the Baltic Sea acts as a carbon sink. For alkalinity, the Baltic Sea is a source due to internal alkalinity generation by denitrification. Owing to the underestimated model alkalinity, an unknown alkalinity source or underestimated land-based fluxes still exist.
Journal Article
Seasonal dynamics and regional distribution patterns of CO2 and CH4 in the north-eastern Baltic Sea
2024
Significant research has been carried out in the last decade to describe the CO2 system dynamics in the Baltic Sea. However, there is a lack of knowledge in this field in the NE Baltic Sea, which is the main focus of the present study. We analysed the physical forcing and hydrographic background in the study year (2018) and tried to elucidate the observed patterns of surface water CO2 partial pressure (pCO2) and methane concentrations (cCH4). Surface water pCO2 and cCH4 were continuously measured during six monitoring cruises onboard R/V Salme, covering the Northern Baltic Proper (NBP), the Gulf of Finland (GoF), and the Gulf of Riga (GoR) and all seasons in 2018. The general seasonal pCO2 pattern showed oversaturation in autumn–winter (average relative CO2 saturation 1.2) and undersaturation in spring–summer (average relative CO2 saturation 0.5), but it locally reached the saturation level during the cruises in April, May, and August in the GoR and in August in the GoF. The cCH4 was oversaturated during the entire study period, and the seasonal course was not well exposed on the background of high variability. Surface water pCO2 and cCH4 distributions showed larger spatial variability in the GoR and GoF than in the NBP for all six cruises. We linked the observed local maxima to river bulges, coastal upwelling events, fronts, and occasions when vertical mixing reached the seabed in shallow areas. Seasonal averaging over the CO2 flux suggests a weak sink for atmospheric CO2 for all basins, but high variability and the long periods between cruises (temporal gaps in observation) preclude a clear statement.
Journal Article