Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
174
result(s) for
"Rehm, Heidi L"
Sort by:
Building the foundation for genomics in precision medicine
2015
Precision medicine has the potential to profoundly improve the practice of medicine. However, the advances required will take time to implement. Genetics is already being used to direct clinical decision-making and its contribution is likely to increase. To accelerate these advances, fundamental changes are needed in the infrastructure and mechanisms for data collection, storage and sharing. This will create a continuously learning health-care system with seamless cycling between clinical care and research. Patients must be educated about the benefits of sharing data. The building blocks for such a system are already forming and they will accelerate the adoption of precision medicine.
Journal Article
Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology
2015
Disclaimer: These ACMG Standards and Guidelines were developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient’s record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.
The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants.1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next-generation sequencing. By adopting and leveraging next-generation sequencing, clinical laboratories are now performing an ever-increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes, and epigenetic assays for genetic disorders. By virtue of increased complexity, this shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context the ACMG convened a workgroup in 2013 comprising representatives from the ACMG, the Association for Molecular Pathology (AMP), and the College of American Pathologists to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP, and College of American Pathologists stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. This report recommends the use of specific standard terminology—“pathogenic,” “likely pathogenic,” “uncertain significance,” “likely benign,” and “benign”—to describe variants identified in genes that cause Mendelian disorders. Moreover, this recommendation describes a process for classifying variants into these five categories based on criteria using typical types of variant evidence (e.g., population data, computational data, functional data, segregation data). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a Clinical Laboratory Improvement Amendments–approved laboratory, with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or the equivalent.
Genet Med17 5, 405–423.
Journal Article
Genetic Misdiagnoses and the Potential for Health Disparities
by
Szolovits, Peter
,
Manrai, Arjun K
,
Rehm, Heidi L
in
Adolescent
,
Adult
,
African Americans - genetics
2016
This study shows that for variants initially classified as pathogenic that were later reclassified as benign, the misclassification would have been prevented had racially diverse populations been considered in the original studies of the variants.
Although hypertrophic cardiomyopathy is best known as a fatal disease of young athletes, it causes considerable morbidity and mortality among patients of all ages and lifestyles.
1
,
2
The defining feature of hypertrophic cardiomyopathy is unexplained left ventricular hypertrophy, but its clinical presentation is variable; it can manifest as severe heart failure in some patients yet be asymptomatic in others.
3
In more than one third of patients, causal genetic lesions are identified, which enables clinicians to assess risk among the patient’s relatives
4
and, in rare circumstances, to tailor therapy for a patient who is found to have a tractable disorder, such . . .
Journal Article
Is ‘likely pathogenic’ really 90% likely? Reclassification data in ClinVar
by
Rehm, Heidi L.
,
Harrison, Steven M.
in
Associations
,
Bioinformatics
,
Biomedical and Life Sciences
2019
In 2015, professional guidelines defined the term ‘likely pathogenic’ to mean with a 90% chance of pathogenicity. To determine whether current practice reflects this definition, ClinVar classifications were tracked from 2016 to 2019. During that period, between 83.8 and 99.1% of likely pathogenic classifications were reclassified as pathogenic, depending on whether LP to VUS reclassifications are included and on how these classifications are categorized.
Journal Article
Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC)
by
Rehm, Heidi L.
,
Caudle, Kelly E.
,
Klein, Teri E.
in
631/208/2489/1512
,
692/700/565/1436/434
,
Alleles
2017
Reporting and sharing pharmacogenetic test results across clinical laboratories and electronic health records is a crucial step toward the implementation of clinical pharmacogenetics, but allele function and phenotype terms are not standardized. Our goal was to develop terms that can be broadly applied to characterize pharmacogenetic allele function and inferred phenotypes.
Terms currently used by genetic testing laboratories and in the literature were identified. The Clinical Pharmacogenetics Implementation Consortium (CPIC) used the Delphi method to obtain a consensus and agree on uniform terms among pharmacogenetic experts.
Experts with diverse involvement in at least one area of pharmacogenetics (clinicians, researchers, genetic testing laboratorians, pharmacogenetics implementers, and clinical informaticians; n = 58) participated. After completion of five surveys, a consensus (>70%) was reached with 90% of experts agreeing to the final sets of pharmacogenetic terms.
The proposed standardized pharmacogenetic terms will improve the understanding and interpretation of pharmacogenetic tests and reduce confusion by maintaining consistent nomenclature. These standard terms can also facilitate pharmacogenetic data sharing across diverse electronic health care record systems with clinical decision support.
Journal Article
Recommendations for clinical interpretation of variants found in non-coding regions of the genome
by
Heidi L. Rehm
,
Diana Baralle
,
Richard D. Bagnall
in
Binding sites
,
Bioinformatics
,
Biomedical and Life Sciences
2022
Background
The majority of clinical genetic testing focuses almost exclusively on regions of the genome that directly encode proteins. The important role of variants in non-coding regions in penetrant disease is, however, increasingly being demonstrated, and the use of whole genome sequencing in clinical diagnostic settings is rising across a large range of genetic disorders. Despite this, there is no existing guidance on how current guidelines designed primarily for variants in protein-coding regions should be adapted for variants identified in other genomic contexts.
Methods
We convened a panel of nine clinical and research scientists with wide-ranging expertise in clinical variant interpretation, with specific experience in variants within non-coding regions. This panel discussed and refined an initial draft of the guidelines which were then extensively tested and reviewed by external groups.
Results
We discuss considerations specifically for variants in non-coding regions of the genome. We outline how to define candidate regulatory elements, highlight examples of mechanisms through which non-coding region variants can lead to penetrant monogenic disease, and outline how existing guidelines can be adapted for the interpretation of these variants.
Conclusions
These recommendations aim to increase the number and range of non-coding region variants that can be clinically interpreted, which, together with a compatible phenotype, can lead to new diagnoses and catalyse the discovery of novel disease mechanisms.
Journal Article
ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing
by
O’Daniel, Julianne M.
,
Rehm, Heidi L.
,
Green, Robert C.
in
631/208/212/2166
,
631/208/212/2301
,
631/208/2489
2013
In clinical exome and genome sequencing, there is a potential for the recognition and reporting of incidental or secondary findings unrelated to the indication for ordering the sequencing but of medical value for patient care. The American College of Medical Genetics and Genomics (ACMG) recently published a policy statement on clinical sequencing that emphasized the importance of alerting the patient to the possibility of such results in pretest patient discussions, clinical testing, and reporting of results. The ACMG appointed a Working Group on Incidental Findings in Clinical Exome and Genome Sequencing to make recommendations about responsible management of incidental findings when patients undergo exome or genome sequencing. This Working Group conducted a year-long consensus process, including an open forum at the 2012 Annual Meeting and review by outside experts, and produced recommendations that have been approved by the ACMG Board. Specific and detailed recommendations, and the background and rationale for these recommendations, are described herein. The ACMG recommends that laboratories performing clinical sequencing seek and report mutations of the specified classes or types in the genes listed here. This evaluation and reporting should be performed for all clinical germline (constitutional) exome and genome sequencing, including the “normal” of tumor-normal subtractive analyses in all subjects, irrespective of age but excluding fetal samples. We recognize that there are insufficient data on penetrance and clinical utility to fully support these recommendations, and we encourage the creation of an ongoing process for updating these recommendations at least annually as further data are collected.
Genet Med
2013:15(7):565–574
Journal Article
ACMG clinical laboratory standards for next-generation sequencing
by
Rehm, Heidi L.
,
Bayrak-Toydemir, Pinar
,
Brown, Kerry K.
in
631/208/1516
,
631/208/514/2254
,
ACMG
2013
Next-generation sequencing technologies have been and continue to be deployed in clinical laboratories, enabling rapid transformations in genomic medicine. These technologies have reduced the cost of large-scale sequencing by several orders of magnitude, and continuous advances are being made. It is now feasible to analyze an individual’s near-complete exome or genome to assist in the diagnosis of a wide array of clinical scenarios. Next-generation sequencing technologies are also facilitating further advances in therapeutic decision making and disease prediction for at-risk patients. However, with rapid advances come additional challenges involving the clinical validation and use of these constantly evolving technologies and platforms in clinical laboratories. To assist clinical laboratories with the validation of next-generation sequencing methods and platforms, the ongoing monitoring of next-generation sequencing testing to ensure quality results, and the interpretation and reporting of variants found using these technologies, the American College of Medical Genetics and Genomics has developed the following professional standards and guidelines.
Genet Med15 9, 733–747.
Journal Article
Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar
2017
Purpose:
Data sharing through ClinVar offers a unique opportunity to identify interpretation differences between laboratories. As part of a ClinGen initiative, four clinical laboratories (Ambry, GeneDx, Partners Healthcare Laboratory for Molecular Medicine, and University of Chicago Genetic Services Laboratory) collaborated to identify the basis of interpretation differences and to investigate if data sharing and reassessment resolve interpretation differences by analyzing a subset of variants.
Methods:
ClinVar variants with submissions from at least two of the four participating laboratories were compared. For a subset of identified differences, laboratories documented the basis for discordance, shared internal data, independently reassessed with the American College of Medical Genetics and Genomics–Association for Molecular Pathology (ACMG-AMP) guidelines, and then compared interpretations.
Results:
At least two of the participating laboratories interpreted 6,169 variants in ClinVar, of which 88.3% were initially concordant. Laboratories reassessed 242/724 initially discordant variants, of which 87.2% (211) were resolved by reassessment with current criteria and/or internal data sharing; 12.8% (31) of reassessed variants remained discordant owing to differences in the application of the ACMG-AMP guidelines.
Conclusion:
Participating laboratories increased their overall concordance from 88.3 to 91.7%, indicating that sharing variant interpretations in ClinVar—thereby allowing identification of differences and motivation to resolve those differences—is critical to moving toward more consistent variant interpretations.
Genet Med
advance online publication 09 March 2017
Journal Article