Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Rehmann, Robert"
Sort by:
Quantitative muscle MRI captures early muscle degeneration in calpainopathy
by
Rohm, Marlena
,
Froeling, Martijn
,
Südkamp, Nicolina
in
692/53/2421
,
692/617/375/374
,
Degeneration
2022
To evaluate differences in qMRI parameters of muscle diffusion tensor imaging (mDTI), fat-fraction (FF) and water T2 time in leg muscles of calpainopathy patients (LGMD R1/D4) compared to healthy controls, to correlate those findings to clinical parameters and to evaluate if qMRI parameters show muscle degeneration in not-yet fatty infiltrated muscles. We evaluated eight thigh and seven calf muscles of 19 calpainopathy patients and 19 healthy matched controls. MRI scans were performed on a 3T MRI including a mDTI, T2 mapping and mDixonquant sequence. Clinical assessment was done with manual muscle testing, patient questionnaires (ACTIVLIM, NSS) as well as gait analysis. Average FF was significantly different in all muscles compared to controls (
p
< 0.001). In muscles with less than 8% FF a significant increase of FA (
p
< 0.005) and decrease of RD (
p
< 0.004) was found in high-risk muscles of calpainopathy patients. Water T2 times were increased within the low- and intermediate-risk muscles (
p
≤ 0.045) but not in high-risk muscles (
p
= 0.062). Clinical assessments correlated significantly with qMRI values: QMFM vs. FF: r = − 0.881,
p
< 0.001; QMFM versus FA: r = − 0.747,
p
< 0.001; QMFM versus MD: r = 0.942,
p
< 0.001. A good correlation of FF and diffusion metrics to clinical assessments was found. Diffusion metrics and T2 values are promising candidates to serve as sensitive early and non-invasive methods to capture early muscle degeneration in non-fat-infiltrated muscles in calpainopathies.
Journal Article
Brain network properties in chronic pain—a systematic review and meta-analysis of graph-based connectivity metrics
by
Enax-Krumova, Elena
,
Butry, Lionel
,
Elsenbruch, Sigrid
in
brain topology
,
chronic pain
,
functional connectivity
2025
Identifying brain topology alterations in chronic pain is a crucial step in understanding its pathophysiology. The primary objective of this systematic review and meta-analysis was to assess alterations in resting-state functional and structural global network properties in patients with chronic pain.
Following the preregistration (PROSPERO CRD42024542390), databases were searched for studies comparing connectivity-based whole-brain global network properties between patients with chronic pain and healthy controls. Risk of bias was assessed using an adapted Newcastle-Ottawa scale. Random-effect meta-analyses were conducted for each global network property separately.
A total of 32 functional topology studies and 17 structural topology studies were included in the qualitative review, with 27 functional topology studies and 17 structural topology studies eligible for meta-analysis across nine unique structural and functional global network properties. The number of participants per meta-analysis ranged from 178 to 1,592. There was low-certainty evidence that chronic pain patients showed impairments in local efficiency of resting-state functional whole-brain topology (SMD: -0.50, 95%-CI: -0.81 to -0.19, 95%-PI: -1.38 to 0.38), and low to very low-certainty evidence that structural whole-brain topology was not altered in chronic pain across nine global network properties. The heterogeneity was high in the majority of functional (I
: 1-76%) and structural (I
: 68-97%) topology studies. Most functional (50%) and structural (65%) topology studies showed some concern regarding the risk of bias.
The meta-analyses indicate that functional but not structural whole-brain topological reorganisation is involved in the pathophysiology of chronic pain.
Journal Article
Muscle diffusion MRI reveals autophagic buildup in a mouse model for Pompe disease
2023
Quantitative muscle MRI is increasingly important in the non-invasive evaluation of neuromuscular disorders and their progression. Underlying histopathotological alterations, leading to changes in qMRI parameters are incompletely unraveled. Early microstructural differences of unknown origin reflected by Diffusion MRI in non-fat infiltrated muscles were detected in Pompe patients. This study employed a longitudinal approach with a Pompe disease mouse model to investigate the histopathological basis of these changes. Monthly scans of Pompe (Gaa
6neo/6neo
) and wildtype mice (age 1–8 months) were conducted using diffusion MRI, T2-mapping, and Dixon-based water-fat imaging on a 7 T scanner. Immunofluorescence studies on quadriceps muscles were analyzed for lysosomal accumulations and autophagic buildup and correlated with MRI outcome measures. Fat fraction and water-T2 did not differ between groups and remained stable over time. In Pompe mice, fractional anisotropy increased, while mean diffusivity (MD) and radial diffusivity (RD) decreased in all observed muscles. Autophagic marker and muscle fibre diameter revealed significant negative correlations with reduced RD and MD, while lysosomal marker did not show any change or correlation. Using qMRI, we showed diffusion changes in muscles of presymptomatic Pompe mice without fat-infiltrated muscles and correlated them to autophagic markers and fibre diameter, indicating diffusion MRI reveals autophagic buildup.
Journal Article
3D Automated Segmentation of Lower Leg Muscles Using Machine Learning on a Heterogeneous Dataset
2021
Quantitative MRI combines non-invasive imaging techniques to reveal alterations in muscle pathophysiology. Creating muscle-specific labels manually is time consuming and requires an experienced examiner. Semi-automatic and fully automatic methods reduce segmentation time significantly. Current machine learning solutions are commonly trained on data from healthy subjects using homogeneous databases with the same image contrast. While yielding high Dice scores (DS), those solutions are not applicable to different image contrasts and acquisitions. Therefore, the aim of our study was to evaluate the feasibility of automatic segmentation of a heterogeneous database. To create a heterogeneous dataset, we pooled lower leg muscle images from different studies with different contrasts and fields-of-view, containing healthy controls and diagnosed patients with various neuromuscular diseases. A second homogenous database with uniform contrasts was created as a subset of the first database. We trained three 3D-convolutional neuronal networks (CNN) on those databases to test performance as compared to manual segmentation. All networks, training on heterogeneous data, were able to predict seven muscles with a minimum average DS of 0.75. U-Net performed best when trained on the heterogeneous dataset (DS: 0.80 ± 0.10, AHD: 0.39 ± 0.35). ResNet and DenseNet yielded higher DS, when trained on a heterogeneous dataset (both DS: 0.86), as compared to a homogeneous dataset (ResNet DS: 0.83, DenseNet DS: 0.76). In conclusion, a CNN trained on a heterogeneous dataset achieves more accurate labels for predicting a heterogeneous database of lower leg muscles than a CNN trained on a homogenous dataset. We propose that a large heterogeneous database is needed, to make automated segmentation feasible for different kinds of image acquisitions.
Journal Article
Dysregulation of Metabolism and Proteostasis in Skeletal Muscle of a Presymptomatic Pompe Mouse Model
by
Rohm, Marlena
,
Südkamp, Nicolina
,
Hentschel, Andreas
in
alpha-Glucosidases
,
Animals
,
Antibodies
2023
Pompe disease is a rare genetic metabolic disorder caused by mutations in acid-alpha glucoside (GAA) leading to pathological lysosomal glycogen accumulation associated with skeletal muscle weakness, respiratory difficulties and cardiomyopathy, dependent from the GAA residual enzyme activity. This study aimed to investigate early proteomic changes in a mouse model of Pompe disease and identify potential therapeutic pathways using proteomic analysis of skeletal muscles from pre-symptomatic Pompe mice. For this purpose, quadriceps samples of Gaa6neo/6neo mutant (Pompe) and wildtype mice, at the age of six weeks, were studied with three biological replicates for each group. The data were validated with skeletal muscle morphology, immunofluorescence studies and western blot analysis. Proteomic profiling identified 538 significantly upregulated and 16 significantly downregulated proteins in quadriceps muscles derived from Pompe animals compared to wildtype mice. The majority of significantly upregulated proteins were involved in metabolism, translation, folding, degrading and vesicular transport, with some having crucial roles in the etiopathology of other neurological or neuromuscular diseases. This study highlights the importance of the early diagnosis and treatment of Pompe disease and suggests potential add-on therapeutic strategies targeting protein dysregulations.
Journal Article
High Inter-Rater Reliability of Manual Segmentation and Volume-Based Tractography in Healthy and Dystrophic Human Calf Muscle
by
Rohm, Marlena
,
Froeling, Martijn
,
Güttsches, Anne-Katrin
in
Algorithms
,
calf musculature
,
Correlation analysis
2021
Background: Muscle diffusion tensor imaging (mDTI) is a promising surrogate biomarker in the evaluation of muscular injuries and neuromuscular diseases. Since mDTI metrics are known to vary between different muscles, separation of different muscles is essential to achieve muscle-specific diffusion parameters. The commonly used technique to assess DTI metrics is parameter maps based on manual segmentation (MSB). Other techniques comprise tract-based approaches, which can be performed in a previously defined volume. This so-called volume-based tractography (VBT) may offer a more robust assessment of diffusion metrics and additional information about muscle architecture through tract properties. The purpose of this study was to assess DTI metrics of human calf muscles calculated with two segmentation techniques—MSB and VBT—regarding their inter-rater reliability in healthy and dystrophic calf muscles. Methods: 20 healthy controls and 18 individuals with different neuromuscular diseases underwent an MRI examination in a 3T scanner using a 16-channel Torso XL coil. DTI metrics were assessed in seven calf muscles using MSB and VBT. Coefficients of variation (CV) were calculated for both techniques. MSB and VBT were performed by two independent raters to assess inter-rater reliability by ICC analysis and Bland-Altman plots. Next to analysis of DTI metrics, the same assessments were also performed for tract properties extracted with VBT. Results: For both techniques, low CV were found for healthy controls (≤13%) and neuromuscular diseases (≤17%). Significant differences between methods were found for all diffusion metrics except for λ1. High inter-rater reliability was found for both MSB and VBT (ICC ≥ 0.972). Assessment of tract properties revealed high inter-rater reliability (ICC ≥ 0.974). Conclusions: Both segmentation techniques can be used in the evaluation of DTI metrics in healthy controls and different NMD with low rater dependency and high precision but differ significantly from each other. Our findings underline that the same segmentation protocol must be used to ensure comparability of mDTI data.
Journal Article
Polarity-Specific Cortical Effects of Transcranial Direct Current Stimulation in Primary Somatosensory Cortex of Healthy Humans
by
Gucia, Tomasz
,
Schwenkreis, Peter
,
Schliesing, Annika
in
Cortex (somatosensory)
,
Electrodes
,
Excitability
2016
Transcranial direct current stimulation (tDCS) is a non-invasive stimulation method that has been shown to modulate the excitability of the motor and visual cortices in human subjects in a polarity dependent manner in previous studies. The aim of our study was to investigate whether anodal and cathodal tDCS can also be used to modulate the excitability of the human primary somatosensory cortex (S1). We measured paired-pulse suppression (PPS) of somatosensory evoked potentials in 36 right-handed volunteers before and after anodal, cathodal, or sham stimulation over the right non-dominant S1. Paired-pulse stimulation of the median nerve was performed at the dominant and non-dominant hand. After anodal tDCS, PPS was reduced in the ipsilateral S1 compared to sham stimulation, indicating an excitatory effect of anodal tDCS. In contrast, PPS in the stimulated left hemisphere was increased after cathodal tDCS, indicating an inhibitory effect of cathodal tDCS. Sham stimulation induced no pre-post differences. Thus, tDCS can be used to modulate the excitability of S1 in polarity-dependent manner, which can be assessed by PPS. An interesting topic for further studies could be the investigation of direct correlations between sensory changes and excitability changes induced by tDCS.
Journal Article
Pre‐ and post‐skeletal muscle biopsy quantitative magnetic resonance imaging reveals correlations with histopathological findings
2024
Background and purpose
Quantitative muscle magnetic resonance imaging (MRI) is a promising non‐invasive method in the diagnostic workup as well as follow‐up of neuromuscular disorders. The aim of this study was to correlate quantitative MRI (qMRI) parameters to histopathological changes in skeletal muscle tissue and thus to verify the data from our pilot study.
Methods
Twenty‐six patients (eight females, 46.4 ± 15.1 years) were examined within 72 h before and within 24 h after a skeletal muscle biopsy using quantitative muscle MRI. Post‐biopsy MRI was employed to pinpoint the exact localization of the biopsy. qMRI parameters including fat fraction, water T2 relaxation time and diffusion metrics including fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were extracted from the localization of the biopsy and correlated with histopathological findings. Additionally, three different segmentation masks were applied to the qMRI dataset, to evaluate whether the whole muscle represents the exact biopsy location.
Results
Fat fraction and water T2 relaxation time in qMRI correlated significantly with the fat fraction in the muscle biopsy and histopathological inflammatory markers. Fractional anisotropy correlated with the quantity of type 2 fibres, whilst mean diffusivity correlated with p62. No differences were found using different segmentation masks in qMRI.
Conclusions
In this follow‐up study, the results from our previous study were verified regarding the correlation of qMRI parameters with histopathological features in muscle biopsies, indicating that qMRI serves as a suitable non‐invasive method in the follow‐up of patients with neuromuscular disorders. If post‐biopsy MRI is not available, whole muscle volume can be used for histopathological correlations.
Journal Article
Evaluation of Neuromuscular Diseases and Complaints by Quantitative Muscle MRI
by
Enax-Krumova, Elena
,
Froeling, Martijn
,
Dinse, Hubert R.
in
COVID-19
,
Data analysis
,
Diagnosis
2024
Background: Quantitative muscle MRI (qMRI) is a promising tool for evaluating and monitoring neuromuscular disorders (NMD). However, the application of different imaging protocols and processing pipelines restricts comparison between patient cohorts and disorders. In this qMRI study, we aim to compare dystrophic (limb-girdle muscular dystrophy), inflammatory (inclusion body myositis), and metabolic myopathy (Pompe disease) as well as patients with post-COVID-19 conditions suffering from myalgia to healthy controls. Methods: Ten subjects of each group underwent a 3T lower extremity muscle MRI, including a multi-echo, gradient-echo, Dixon-based sequence, a multi-echo, spin-echo (MESE) T2 mapping sequence, and a spin-echo EPI diffusion-weighted sequence. Furthermore, the following clinical assessments were performed: Quick Motor Function Measure, patient questionnaires for daily life activities, and 6-min walking distance. Results: Different involvement patterns of conspicuous qMRI parameters for different NMDs were observed. qMRI metrics correlated significantly with clinical assessments. Conclusions: qMRI metrics are suitable for evaluating patients with NMD since they show differences in muscular involvement in different NMDs and correlate with clinical assessments. Still, standardisation of acquisition and processing is needed for broad clinical use.
Journal Article