Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
650
result(s) for
"Reich, Peter B"
Sort by:
The world-wide 'fast–slow' plant economics spectrum: a traits manifesto
2014
1. The leaf economics spectrum (LES) provides a useful framework for examining species strategies as shaped by their evolutionary history. However, that spectrum, as originally described, involved only two key resources (carbon and nutrients) and one of three economically important plant organs. Herein, I evaluate whether the economics spectrum idea can be broadly extended to water – the third key resource –stems, roots and entire plants and to individual, community and ecosystem scales. My overarching hypothesis is that strong selection along trait trade-off axes, in tandem with biophysical constraints, results in convergence for any taxon on a uniformly fast, medium or slow strategy (i.e. rates of resource acquisition and processing) for all organs and all resources. 2. Evidence for economic trait spectra exists for stems and roots as well as leaves, and for traits related to water as well as carbon and nutrients. These apply generally within and across scales (within and across communities, climate zones, biomes and lineages). 3. There are linkages across organs and coupling among resources, resulting in an integrated whole-plant economics spectrum. Species capable of moving water rapidly have low tissue density, short tissue life span and high rates of resource acquisition and flux at organ and individual scales. The reverse is true for species with the slow strategy. Different traits may be important in different conditions, but as being fast in one respect generally requires being fast in others, being fast or slow is a general feature of species. 4. Economic traits influence performance and fitness consistent with trait-based theory about underlying adaptive mechanisms. Traits help explain differences in growth and survival across resource gradients and thus help explain the distribution of species and the assembly of communities across light, water and nutrient gradients. Traits scale up – fast traits are associated with faster rates of ecosystem processes such as decomposition or primary productivity, and slow traits with slow process rates. 5. Synthesis. Traits matter. A single 'fast–slow' plant economics spectrum that integrates across leaves, stems and roots is a key feature of the plant universe and helps to explain individual ecological strategies, community assembly processes and the functioning of ecosystems.
Journal Article
Key canopy traits drive forest productivity
2012
Quantifying the mechanistic links between carbon fluxes and forest canopy attributes will advance understanding of leaf-to-ecosystem scaling and its potential application to assessing terrestrial ecosystem metabolism. Important advances have been made, but prior studies that related carbon fluxes to multiple canopy traits are scarce. Herein, presenting data for 128 cold temperate and boreal forests across a regional gradient of 600 km and 5.4°C (from 2.4°C to 7.8°C) in mean annual temperature, I show that stand-scale productivity is a function of the capacity to harvest light (represented by leaf area index, LAI), and to biochemically fix carbon (represented by canopy nitrogen concentration, %N). In combination, LAI and canopy %N explain greater than 75 per cent of variation in above-ground net primary productivity among forests, expressed per year or per day of growing season. After accounting for growing season length and climate effects, less than 10 per cent of the variance remained unexplained. These results mirror similar relations of leaf-scale and canopy-scale (eddy covariance) maximum photosynthetic rates to LAI and %N. Collectively, these findings indicate that canopy structure and chemistry translate from instantaneous physiology to annual carbon fluxes. Given the increasing capacity to remotely sense canopy LAI, %N and phenology, these results support the idea that physiologically based scaling relations can be useful tools for global modelling.
Journal Article
Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory
by
Tilman, David
,
Reich, Peter B
,
Isbell, Forest
in
Anthropogenic factors
,
Biodiversity
,
Biodiversity loss
2012
Although the impacts of the loss of biodiversity on ecosystem functioning are well established, the importance of the loss of biodiversity relative to other human-caused drivers of environmental change remains uncertain. Results of 11 experiments show that ecologically relevant decreases in grassland plant diversity influenced productivity at least as much as ecologically relevant changes in nitrogen, water, CO ₂, herbivores, drought, or fire. Moreover, biodiversity became an increasingly dominant driver of ecosystem productivity through time, whereas effects of other factors either declined (nitrogen addition) or remained unchanged (all others). In particular, a change in plant diversity from four to 16 species caused as large an increase in productivity as addition of 54 kg⋅ha ⁻¹⋅y ⁻¹ of fertilizer N, and was as influential as removing a dominant herbivore, a major natural drought, water addition, and fire suppression. A change in diversity from one to 16 species caused a greater biomass increase than 95 kg⋅ha ⁻¹⋅y ⁻¹ of N or any other treatment. Our conclusions are based on >7,000 productivity measurements from 11 long-term experiments (mean length, ∼ 13 y) conducted at a single site with species from a single regional species pool, thus controlling for many potentially confounding factors. Our results suggest that the loss of biodiversity may have at least as great an impact on ecosystem functioning as other anthropogenic drivers of environmental change, and that use of diverse mixtures of species may be as effective in increasing productivity of some biomass crops as fertilization and may better provide ecosystem services.
Journal Article
Tree diversity increases decadal forest soil carbon and nitrogen accrual
2023
Increasing soil carbon and nitrogen storage can help mitigate climate change and sustain soil fertility
1
,
2
. A large number of biodiversity-manipulation experiments collectively suggest that high plant diversity increases soil carbon and nitrogen stocks
3
,
4
. It remains debated, however, whether such conclusions hold in natural ecosystems
5
–
12
. Here we analyse Canada’s National Forest Inventory (NFI) database with the help of structural equation modelling (SEM) to explore the relationship between tree diversity and soil carbon and nitrogen accumulation in natural forests. We find that greater tree diversity is associated with higher soil carbon and nitrogen accumulation, validating inferences from biodiversity-manipulation experiments. Specifically, on a decadal scale, increasing species evenness from its minimum to maximum value increases soil carbon and nitrogen in the organic horizon by 30% and 42%, whereas increasing functional diversity enhances soil carbon and nitrogen in the mineral horizon by 32% and 50%, respectively. Our results highlight that conserving and promoting functionally diverse forests could promote soil carbon and nitrogen storage, enhancing both carbon sink capacity and soil nitrogen fertility.
Analysis of data from the Canadian National Forest Inventory database suggests that greater tree diversity in natural forests is associated with increases in soil carbon and nitrogen stocks.
Journal Article
emergence and promise of functional biogeography
by
Violle, Cyrille
,
Pacala, Stephen W.
,
Kattge, Jens
in
Biodiversity
,
Biogeography
,
Biological Sciences
2014
Understanding, modeling, and predicting the impact of global change on ecosystem functioning across biogeographical gradients can benefit from enhanced capacity to represent biota as a continuous distribution of traits. However, this is a challenge for the field of biogeography historically grounded on the species concept. Here we focus on the newly emergent field of functional biogeography: the study of the geographic distribution of trait diversity across organizational levels. We show how functional biogeography bridges species-based biogeography and earth science to provide ideas and tools to help explain gradients in multifaceted diversity (including species, functional, and phylogenetic diversities), predict ecosystem functioning and services worldwide, and infuse regional and global conservation programs with a functional basis. Although much recent progress has been made possible because of the rising of multiple data streams, new developments in ecoinformatics, and new methodological advances, future directions should provide a theoretical and comprehensive framework for the scaling of biotic interactions across trophic levels and its ecological implications.
Journal Article
Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture
by
Stefanski, Artur
,
Rich, Roy L.
,
Montgomery, Rebecca A.
in
631/158/2449
,
704/106
,
Ambient temperature
2018
Climate warming will influence photosynthesis via thermal effects and by altering soil moisture
1
–
11
. Both effects may be important for the vast areas of global forests that fluctuate between periods when cool temperatures limit photosynthesis and periods when soil moisture may be limiting to carbon gain
4
–
6
,
9
–
11
. Here we show that the effects of climate warming flip from positive to negative as southern boreal forests transition from rainy to modestly dry periods during the growing season. In a three-year open-air warming experiment with juveniles of 11 temperate and boreal tree species, an increase of 3.4 °C in temperature increased light-saturated net photosynthesis and leaf diffusive conductance on average on the one-third of days with the wettest soils. In all 11 species, leaf diffusive conductance and, as a result, light-saturated net photosynthesis decreased during dry spells, and did so more sharply in warmed plants than in plants at ambient temperatures. Consequently, across the 11 species, warming reduced light-saturated net photosynthesis on the two-thirds of days with driest soils. Thus, low soil moisture may reduce, or even reverse, the potential benefits of climate warming on photosynthesis in mesic, seasonally cold environments, both during drought and in regularly occurring, modestly dry periods during the growing season.
Low soil moisture may reduce, or even reverse, the potential benefits of climate warming on photosynthesis in mesic, seasonally cold environments, both during drought and in regularly occurring, modestly dry periods during the growing season.
Journal Article
Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation
2014
Rising atmospheric CO
2
concentrations can fertilize plant growth. The resulting increased plant uptake of CO
2
could, in turn, slow increases in atmospheric CO
2
levels and associated climate warming. CO
2
fertilization effects may be enhanced when water availability is low, because elevated CO
2
also leads to improved plant water-use efficiency. However, CO
2
fertilization effects may be weaker when plant growth is limited by nutrient availability. How variation in soil nutrients and water may act together to influence CO
2
fertilization is unresolved. Here we report plant biomass levels from a five-year, open-air experiment in a perennial grassland under two contrasting levels of atmospheric CO
2
, soil nitrogen and summer rainfall, respectively. We find that the presence of a CO
2
fertilization effect depends on the amount of available nitrogen and water. Specifically, elevated CO
2
levels led to an increase in plant biomass of more than 33% when summer rainfall, nitrogen supply, or both were at the higher levels (ambient for rainfall and elevated for soil nitrogen). But elevated CO
2
concentrations did not increase plant biomass when both rainfall and nitrogen were at their lower level. We conclude that given widespread, simultaneous limitation by water and nutrients, large stimulation of biomass by rising atmospheric CO
2
concentrations may not be ubiquitous.
Elevated CO
2
is known to fertilize plant growth, resulting in greater uptake of atmospheric CO
2
by plants. However, CO
2
fertilization in a perennial grassland is absent when plants are jointly limited by both water and nitrogen.
Journal Article
Erosion reduces soil microbial diversity, network complexity and multifunctionality
by
Wei, Xiaorong
,
Sadowsky, Michael J.
,
Ishii, Satoshi
in
631/326/171/1818
,
704/158/855
,
Abundance
2021
While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.
Journal Article
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots
2014
Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (> 6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.
Journal Article
Anthropogenic environmental changes affect ecosystem stability via biodiversity
by
Tilman, David
,
Reich5, Peter B.
,
Seabloom, Eric W.
in
Anthropogenic factors
,
Biodiversity
,
Biodiversity loss
2015
Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.
Journal Article