Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19
result(s) for
"Reinhardt, Anita"
Sort by:
Natural Products from Cyanobacteria: Focus on Beneficial Activities
2019
Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products that they synthesize, support cyanobacterial success in colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential in various fields (e.g., a synthetic analog of dolastatin 10 is used against Hodgkin’s lymphoma). The present review focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been observed to produce compounds with potentially beneficial activities in which most of them belong to the orders Oscillatoriales, Nostocales, Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial metabolites possessing beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relationship between the chemical class and the respective bioactivity of these molecules has been demonstrated. We further selected and specifically described 47 molecule families according to their respective bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. With this up-to-date review, we attempt to present new perspectives for the rational discovery of novel cyanobacterial metabolites with beneficial bioactivity.
Journal Article
Anti-Inflammatory, Antioxidant, and Wound-Healing Properties of Cyanobacteria from Thermal Mud of Balaruc-Les-Bains, France: A Multi-Approach Study
2021
Background: The Balaruc-les-Bains’ thermal mud was found to be colonized predominantly by microorganisms, with cyanobacteria constituting the primary organism in the microbial biofilm observed on the mud surface. The success of cyanobacteria in colonizing this specific ecological niche can be explained in part by their taxa-specific adaptation capacities, and also the diversity of bioactive natural products that they synthesize. This array of components has physiological and ecological properties that may be exploited for various applications. Methods: Nine cyanobacterial strains were isolated from Balaruc thermal mud and maintained in the Paris Museum Collection (PMC). Full genome sequencing was performed coupled with targeted and untargeted metabolomic analyses (HPLC-DAD and LC-MS/MS). Bioassays were performed to determine antioxidant, anti-inflammatory, and wound-healing properties. Results: Biosynthetic pathways for phycobiliproteins, scytonemin, and carotenoid pigments and 124 metabolite biosynthetic gene clusters (BGCs) were characterized. Several compounds with known antioxidant or anti-inflammatory properties, such as carotenoids, phycobilins, mycosporine-like amino acids, and aeruginosins, and other bioactive metabolites like microginins, microviridins, and anabaenolysins were identified. Secretion of the proinflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8 appeared to be inhibited by crude extracts of Planktothricoides raciborskii PMC 877.14, Nostoc sp. PMC 881.14, and Pseudo-chroococcus couteii PMC 885.14. The extract of the Aliinostoc sp. PMC 882.14 strain was able to slightly enhance migration of HaCat cells that may be helpful in wound healing. Several antioxidant compounds were detected, but no significant effects on nitric oxide secretion were observed. There was no cytotoxicity on the three cell types tested, indicating that cyanobacterial extracts may have anti-inflammatory therapeutic potential without harming body cells. These data open up promising uses for these extracts and their respective molecules in drugs or thermal therapies.
Journal Article
Dynamics of the Metabolome of Aliinostoc sp. PMC 882.14 in Response to Light and Temperature Variations
by
Demay, Justine
,
Kim Tiam, Sandra
,
Reinhardt, Anita
in
Abiotic factors
,
Amino acids
,
Bioactive compounds
2021
Cyanobacteria are microorganisms able to adapt to a wide variety of environmental conditions and abiotic stresses. They produce a large number of metabolites that can participate in the dynamic adaptation of cyanobacteria to a range of different light, temperature, and nutrient conditions. Studying the metabolite profile is one way to understand how the physiological status of cells is related to their adaptive response. In this study, we sought to understand how the diversity and dynamics of the whole metabolome depended on the growth phase and various abiotic factors such as light intensity and temperature. The cyanobacterium, Aliinostoc sp. PMC 882.14, was selected for its large number of biosynthetic gene clusters. One group of cells was grown under normal conditions as a control, while other groups were grown under higher light or temperature. Metabolomes were analyzed by mass spectrometry (qTOF-MS/MS) combined with untargeted analysis to investigate metabolite dynamics, and significant variation was found between exponential and stationary phases, regardless of culture conditions. In the higher light group, the synthesis of several metabolites, including shinorine, was induced while other metabolites, such as microviridins, were synthesized under higher temperature conditions. Among highly regulated metabolites, we observed the presence of mycosporine-like amino acids (MAAs) and variants of somamides, microginins, and microviridins. This study demonstrated the importance of considering the physiological state of cyanobacteria for comparative global metabolomics and studies of the regulatory processes involved in production of specific metabolites. Our results also open up new perspectives on the use of organisms such as cyanobacteria for the targeted production of bioactive metabolites.
Journal Article
Metagenome-Based Exploration of Bacterial Communities Associated with Cyanobacteria Strains Isolated from Thermal Muds
2022
Cyanobacteria constitute a pioneer colonizer of specific environments for whom settlement in new biotopes precedes the establishment of composite microbial consortia. Some heterotrophic bacteria constitute cyanobacterial partners that are considered as their cyanosphere, being potentially involved in mutualistic relationships through the exchange and recycling of key nutrients and the sharing of common goods. Several non-axenic cyanobacterial strains have been recently isolated, along with their associated cyanospheres, from the thermal mud of Balaruc-les-Bains (France) and the biofilms of the retention basin where they develop. The community structure and relationships among the members of the isolated cyanobacterial strains were characterized using a metagenomic approach combined with taxonomic and microscopic descriptions of the microbial consortia. The results provided insights into the potential role and metabolic capabilities of the microorganisms of thermal mud-associated cyanobacterial biofilms. Thus, the physical proximity, host-specificity, and genetic potential functions advocate for their complementarity between cyanobacteria and their associated microbiota. Besides these findings, our results also highlighted the great influence of the reference protein database chosen for performing functional annotation of the metagenomes from organisms of the cyanosphere and the difficulty of selecting one unique database that appropriately covers both autotroph and heterotroph metabolic specificities.
Journal Article
Strategies for Success: Crisis Management Model for Remediation of At-Risk Students
by
Anita C. Reinhardt
,
Linda Ochart Summers
,
Pamela Schultz
in
Academic failure
,
Adult
,
At risk students
2012
Student success is a concern for all nursing schools. Accountability for NCLEXStudent success is a concern for all nursing schools. Accountability for NCLEX
®
pass rates, along with accountability for student attrition and progression, compel nursing schools to carefully select applicants and then actively manage their progress. One of the strategies of managing student progression is to use standardized, nationally normalized exit examinations to identify students at risk for NCLEX-RN failure. This article describes the response of one baccalaureate nursing program to an unacceptable number of exit examination failures among senior students preparing to graduate. As a unique approach to this matter, a crisis management process was used to assess the problem, to develop and implement an intervention for at-risk students, and to revise program policies to better support ongoing student success.
Journal Article
Identification of Human Proteins That Modify Misfolding and Proteotoxicity of Pathogenic Ataxin-1
2012
Proteins with long, pathogenic polyglutamine (polyQ) sequences have an enhanced propensity to spontaneously misfold and self-assemble into insoluble protein aggregates. Here, we have identified 21 human proteins that influence polyQ-induced ataxin-1 misfolding and proteotoxicity in cell model systems. By analyzing the protein sequences of these modifiers, we discovered a recurrent presence of coiled-coil (CC) domains in ataxin-1 toxicity enhancers, while such domains were not present in suppressors. This suggests that CC domains contribute to the aggregation- and toxicity-promoting effects of modifiers in mammalian cells. We found that the ataxin-1-interacting protein MED15, computationally predicted to possess an N-terminal CC domain, enhances spontaneous ataxin-1 aggregation in cell-based assays, while no such effect was observed with the truncated protein MED15ΔCC, lacking such a domain. Studies with recombinant proteins confirmed these results and demonstrated that the N-terminal CC domain of MED15 (MED15CC) per se is sufficient to promote spontaneous ataxin-1 aggregation in vitro. Moreover, we observed that a hybrid Pum1 protein harboring the MED15CC domain promotes ataxin-1 aggregation in cell model systems. In strong contrast, wild-type Pum1 lacking a CC domain did not stimulate ataxin-1 polymerization. These results suggest that proteins with CC domains are potent enhancers of polyQ-mediated protein misfolding and aggregation in vitro and in vivo.
Journal Article
Massively parallel pathogen identification using high‐density microarrays
by
Vallaeys, Tatiana
,
Old, Iain G.
,
Cole, Stewart T.
in
Antibiotic resistance
,
Antibiotics
,
Bacteria
2008
Summary
Identification of microbial pathogens in clinical specimens is still performed by phenotypic methods that are often slow and cumbersome, despite the availability of more comprehensive genotyping technologies. We present an approach based on whole‐genome amplification and resequencing microarrays for unbiased pathogen detection. This 10 h process identifies a broad spectrum of bacterial and viral species and predicts antibiotic resistance and pathogenicity and virulence profiles. We successfully identify a variety of bacteria and viruses, both in isolation and in complex mixtures, and the high specificity of the microarray distinguishes between different pathogens that cause diseases with overlapping symptoms. The resequencing approach also allows identification of organisms whose sequences are not tiled on the array, greatly expanding the repertoire of identifiable organisms and their variants. We identify organisms by hybridization of their DNA in as little as 1–4 h. Using this method, we identified Monkeypox virus and drug‐resistant Staphylococcus aureus in a skin lesion taken from a child suspected of an orthopoxvirus infection, despite poor transport conditions of the sample, and a vast excess of human DNA. Our results suggest this technology could be applied in a clinical setting to test for numerous pathogens in a rapid, sensitive and unbiased manner.
Journal Article
Diversity of cyanobacteria from thermal muds (Balaruc-Les-Bains, France) with the description of Pseudochroococcus coutei gen. nov., sp. nov
2021
Cyanobacteria are able to synthesize a high diversity of natural compounds that account for their success in the colonization of a variety of ecological niches. Many of them have beneficial properties. The mud from the thermal baths of Balaruc-Les-Bains, one of the oldest thermal baths in France, has long been recognized as a healing treatment for arthro-rheumatic diseases. To characterize the cyanobacteria living in these muds, several strains were isolated from the water column and biofilms of the retention basin and analyzed using a polyphasic approach. Morphological, ultrastructural and molecular (16S rRNA gene and 16S-23S ITS region sequencing) methods were employed to identify nine cyanobacterial strains belonging to the orders Chroococcales, Synechococcales, Oscillatoriales and Nostocales. The combination of morphological and genetic characteristics supported the description of a new genus and species with the type species as Pseudochroococcus coutei. The taxonomic diversity in the muds from Thermes de Balaruc-Les-Bains appears higher than previously documented, providing new candidate taxa for their observed therapeutic properties.
Journal Article
CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms
by
Burdine, Rebecca D
,
Castleman, Victoria H
,
Loges, Niki T
in
631/136/334/1874/763
,
631/208/207
,
631/208/2489/144
2012
Iain Drummond, Heymut Omran, Stephen King and colleagues show that
CCDC103
mutations cause primary ciliary dyskinesia. Their studies suggest that CCDC103 is a core axonemal factor that helps anchor dynein motor complexes to ciliary microtubules.
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality
1
. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000–30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending
2
. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci
3
. Here we show that the zebrafish cilia paralysis mutant
schmalhans
(
smh
tn222
) encodes the coiled-coil domain containing 103 protein (Ccdc103), a
foxj1a
-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in
CCDC103
. Dynein arm assembly in
smh
mutant zebrafish was rescued by wild-type but not mutant human CCDC103.
Chlamydomonas
Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.
Journal Article