Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Remnestål, Julia"
Sort by:
Altered levels of CSF proteins in patients with FTD, presymptomatic mutation carriers and non-carriers
by
Remnestål, Julia
,
Månberg, Anna
,
Bergström, Sofia
in
Antibodies
,
Antibody suspension bead array
,
Aphasia
2020
Background
The clinical presentations of frontotemporal dementia (FTD) are diverse and overlap with other neurological disorders. There are, as of today, no biomarkers in clinical practice for diagnosing the disorders. Here, we aimed to find protein markers in cerebrospinal fluid (CSF) from patients with FTD, presymptomatic mutation carriers and non-carriers.
Methods
Antibody suspension bead arrays were used to analyse 328 proteins in CSF from patients with behavioural variant FTD (bvFTD,
n
= 16) and progressive primary aphasia (PPA,
n
= 13), as well as presymptomatic mutation carriers (PMC,
n
= 16) and non-carriers (NC,
n
= 8). A total of 492 antibodies were used to measure protein levels by direct labelling of the CSF samples. The findings were further examined in an independent cohort including 13 FTD patients, 79 patients with Alzheimer’s disease and 18 healthy controls.
Results
We found significantly altered protein levels in CSF from FTD patients compared to unaffected individuals (PMC and NC) for 26 proteins. The analysis show patterns of separation between unaffected individuals and FTD patients, especially for those with a clinical diagnosis of bvFTD. The most statistically significant differences in protein levels were found for VGF, TN-R, NPTXR, TMEM132D, PDYN and NF-M. Patients with FTD were found to have higher levels of TN-R and NF-M, and lower levels of VGF, NPTXR, TMEM132D and PDYN, compared to unaffected individuals. The main findings were reproduced in the independent cohort.
Conclusion
In this pilot study, we show a separation of FTD patients from unaffected individuals based on protein levels in CSF. Further investigation is required to explore the CSF profiles in larger cohorts, but the results presented here has the potential to enable future clinical utilization of these potential biomarkers within FTD.
Journal Article
Association of CSF proteins with tau and amyloid β levels in asymptomatic 70-year-olds
by
Remnestål, Julia
,
Månberg, Anna
,
Bergström, Sofia
in
AD pathophysiology
,
Affinity proteomics
,
Alzheimer Disease
2021
Background
Increased knowledge of the evolution of molecular changes in neurodegenerative disorders such as Alzheimer’s disease (AD) is important for the understanding of disease pathophysiology and also crucial to be able to identify and validate disease biomarkers. While several biological changes that occur early in the disease development have already been recognized, the need for further characterization of the pathophysiological mechanisms behind AD still remains.
Methods
In this study, we investigated cerebrospinal fluid (CSF) levels of 104 proteins in 307 asymptomatic 70-year-olds from the H70 Gothenburg Birth Cohort Studies using a multiplexed antibody- and bead-based technology.
Results
The protein levels were first correlated with the core AD CSF biomarker concentrations of total tau, phospho-tau and amyloid beta (Aβ42) in all individuals. Sixty-three proteins showed significant correlations to either total tau, phospho-tau or Aβ42. Thereafter, individuals were divided based on CSF Aβ42/Aβ40 ratio and Clinical Dementia Rating (CDR) score to determine if early changes in pathology and cognition had an effect on the correlations. We compared the associations of the analysed proteins with CSF markers between groups and found 33 proteins displaying significantly different associations for amyloid-positive individuals and amyloid-negative individuals, as defined by the CSF Aβ42/Aβ40 ratio. No differences in the associations could be seen for individuals divided by CDR score.
Conclusions
We identified a series of transmembrane proteins, proteins associated with or anchored to the plasma membrane, and proteins involved in or connected to synaptic vesicle transport to be associated with CSF biomarkers of amyloid and tau pathology in AD. Further studies are needed to explore these proteins’ role in AD pathophysiology.
Journal Article
Altered perivascular fibroblast activity precedes ALS disease onset
by
Trusohamn, Marta
,
Rodriguez-Vieitez, Elena
,
Van Damme, Philip
in
631/378/87
,
692/53/2422
,
692/617/375/1370
2021
Apart from well-defined factors in neuronal cells
1
, only a few reports consider that the variability of sporadic amyotrophic lateral sclerosis (ALS) progression can depend on less-defined contributions from glia
2
,
3
and blood vessels
4
. In this study we use an expression-weighted cell-type enrichment method to infer cell activity in spinal cord samples from patients with sporadic ALS and mouse models of this disease. Here we report that patients with sporadic ALS present cell activity patterns consistent with two mouse models in which enrichments of vascular cell genes preceded microglial response. Notably, during the presymptomatic stage, perivascular fibroblast cells showed the strongest gene enrichments, and their marker proteins SPP1 and COL6A1 accumulated in enlarged perivascular spaces in patients with sporadic ALS. Moreover, in plasma of 574 patients with ALS from four independent cohorts, increased levels of SPP1 at disease diagnosis repeatedly predicted shorter survival with stronger effect than the established risk factors of bulbar onset or neurofilament levels in cerebrospinal fluid. We propose that the activity of the recently discovered perivascular fibroblast can predict survival of patients with ALS and provide a new conceptual framework to re-evaluate definitions of ALS etiology.
Increased perivascular fibroblast activity and vascular remodeling occurs early in ALS pathogenesis and can predict patient survival time
Journal Article
Multi‐cohort profiling reveals elevated CSF levels of brain‐enriched proteins in Alzheimer’s disease
by
Remnestål, Julia
,
Bergström, Sofia
,
Corvol, Jean‐Christophe
in
Adult
,
Aged
,
Aged, 80 and over
2021
Objective Decreased amyloid beta (Aβ) 42 together with increased tau and phospho‐tau in cerebrospinal fluid (CSF) is indicative of Alzheimer’s disease (AD). However, the molecular pathophysiology underlying the slowly progressive cognitive decline observed in AD is not fully understood and it is not known what other CSF biomarkers may be altered in early disease stages. Methods We utilized an antibody‐based suspension bead array to analyze levels of 216 proteins in CSF from AD patients, patients with mild cognitive impairment (MCI), and controls from two independent cohorts collected within the AETIONOMY consortium. Two additional cohorts from Sweden were used for biological verification. Results Six proteins, amphiphysin (AMPH), aquaporin 4 (AQP4), cAMP‐regulated phosphoprotein 21 (ARPP21), growth‐associated protein 43 (GAP43), neurofilament medium polypeptide (NEFM), and synuclein beta (SNCB) were found at increased levels in CSF from AD patients compared with controls. Next, we used CSF levels of Aβ42 and tau for the stratification of the MCI patients and observed increased levels of AMPH, AQP4, ARPP21, GAP43, and SNCB in the MCI subgroups with abnormal tau levels compared with controls. Further characterization revealed strong to moderate correlations between these five proteins and tau concentrations. Interpretation In conclusion, we report six extensively replicated candidate biomarkers with the potential to reflect disease development. Continued evaluation of these proteins will determine to what extent they can aid in the discrimination of MCI patients with and without an underlying AD etiology, and if they have the potential to contribute to a better understanding of the AD continuum.
Journal Article
Association of CSF proteins with tau and amyloid beta levels in asymptomatic 70-year-olds
by
Remnestål, Julia
,
Månberg, Anna
,
Bergström, Sofia
in
Aged
,
Alzheimer's disease
,
Amyloid beta-protein
2021
Background Increased knowledge of the evolution of molecular changes in neurodegenerative disorders such as Alzheimer's disease (AD) is important for the understanding of disease pathophysiology and also crucial to be able to identify and validate disease biomarkers. While several biological changes that occur early in the disease development have already been recognized, the need for further characterization of the pathophysiological mechanisms behind AD still remains. Methods In this study, we investigated cerebrospinal fluid (CSF) levels of 104 proteins in 307 asymptomatic 70-year-olds from the H70 Gothenburg Birth Cohort Studies using a multiplexed antibody- and bead-based technology. Results The protein levels were first correlated with the core AD CSF biomarker concentrations of total tau, phospho-tau and amyloid beta (A[beta]42) in all individuals. Sixty-three proteins showed significant correlations to either total tau, phospho-tau or A[beta]42. Thereafter, individuals were divided based on CSF A[beta]42/A[beta]40 ratio and Clinical Dementia Rating (CDR) score to determine if early changes in pathology and cognition had an effect on the correlations. We compared the associations of the analysed proteins with CSF markers between groups and found 33 proteins displaying significantly different associations for amyloid-positive individuals and amyloid-negative individuals, as defined by the CSF A[beta]42/A[beta]40 ratio. No differences in the associations could be seen for individuals divided by CDR score. Conclusions We identified a series of transmembrane proteins, proteins associated with or anchored to the plasma membrane, and proteins involved in or connected to synaptic vesicle transport to be associated with CSF biomarkers of amyloid and tau pathology in AD. Further studies are needed to explore these proteins' role in AD pathophysiology. Keywords: Preclinical Alzheimer's disease, Affinity proteomics, CSF markers, Brain-enriched proteins, Multidisciplinary epidemiological studies, AD pathophysiology
Journal Article
Association of CSF proteins with tau and amyloid β levels in asymptomatic 70-year-olds
by
Remnestål, Julia
,
Månberg, Anna
,
Bergström, Sofia
in
Alzheimer's disease
,
Asymptomatic
,
Biomarkers
2021
Background Increased knowledge of the evolution of molecular changes in neurodegenerative disorders such as Alzheimer’s disease (AD) is important for the understanding of disease pathophysiology and also crucial to be able to identify and validate disease biomarkers. While several biological changes that occur early in the disease development have already been recognised, the need for further characterization of the pathophysiological mechanisms behind AD still remains. Methods In this study, we investigated cerebrospinal fluid (CSF) levels of 104 proteins in 307 asymptomatic 70-year-olds from the H70 Gothenburg Birth Cohort Studies using a multiplexed antibody- and bead-based technology. Results The protein levels were first correlated with the core AD CSF biomarker concentrations of total tau, phospho-tau and amyloid beta (Aβ42) in all individuals. Sixty-three proteins showed significant correlations to either total tau, phospho-tau or Aβ42. Thereafter, individuals were divided based on CSF Aβ42/Aβ40 ratio and Clinical Dementia Rating (CDR) score to determine if early changes in pathology and cognition had an effect on the correlations. We compared the associations of the analysed proteins with CSF markers between groups and found 33 proteins displaying significantly different associations for amyloid-positive individuals and amyloid-negative individuals, as defined by the CSF Aβ42/Aβ40 ratio. No differences in the associations could be seen for individuals divided by CDR score. Conclusions We identified a series of transmembrane proteins, proteins associated with or anchored to the plasma membrane, and proteins involved in or connected to synaptic vesicle transport to be associated with CSF biomarkers of amyloid and tau pathology in AD. Further studies are needed to explore these proteins’ role in AD pathophysiology.
Web Resource