Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Resmini, Marina"
Sort by:
Mapping Microplastics in Humans: Analysis of Polymer Types, and Shapes in Food and Drinking Water—A Systematic Review
by
Resmini, Marina
,
Vdovchenko, Alena
in
Drinking water
,
Drinking Water - analysis
,
Drinking Water - chemistry
2024
Microplastics (MPs) pervade the environment, infiltrating food sources and human bodies, raising concerns about their impact on human health. This review is focused on three key questions: (i) What type of polymers are humans most exposed to? (ii) What are the prevalent shapes of MPs found in food and human samples? (iii) Are the data influenced by the detection limit on the size of particles? Through a systematic literature analysis, we have explored data on polymer types and shapes found in food and human samples. The data provide evidence that polyester is the most commonly detected polymer in humans, followed by polyamide, polyurethane, polypropylene, and polyacrylate. Fibres emerge as the predominant shape across all categories, suggesting potential environmental contamination from the textile industry. Studies in humans and drinking water reported data on small particles, in contrast to larger size MPs detected in environmental research, in particular seafood. Discrepancies in size detection methodologies across different reports were identified, which could impact some of the discussed trends. This study highlights the need for more comprehensive research on the interactions between MPs and biological systems and the effects of MPs on toxicity, together with standardised analytical methodologies to accurately assess contamination levels and human exposure. Understanding these dynamics is essential for formulating effective strategies to mitigate the environmental and health implications of MP pollution.
Journal Article
The Role of Crosslinker Content of Positively Charged NIPAM Nanogels on the In Vivo Toxicity in Zebrafish
by
Resmini, Marina
,
Brennan, Caroline H.
,
Bilardo, Roberta
in
Biocompatibility
,
Crosslinked polymers
,
Drug delivery systems
2023
Polymeric nanogels as drug delivery systems offer great advantages, such as high encapsulation capacity and easily tailored formulations; however, data on biocompatibility are still limited. We synthesized N-isopropylacrylamide nanogels, with crosslinker content between 5 and 20 mol%, functionalized with different positively charged co-monomers, and investigated the in vivo toxicity in zebrafish. Our results show that the chemical structure of the basic unit impacts the toxicity profile depending on the degree of ionization and hydrogen bonding capability. When the degree of crosslinking of the polymer was altered, from 5 mol% to 20 mol%, the distribution of the positively charged monomer 2-tert-butylaminoethyl methacrylate was significantly altered, leading to higher surface charges for the more rigid nanogels (20 mol% crosslinker), which resulted in >80% survival rate (48 h, up to 0.5 mg/mL), while the more flexible polymers (5 mol% crosslinker) led to 0% survival rate (48 h, up to 0.5 mg/mL). These data show the importance of tailoring both chemical composition and rigidity of the formulation to minimize toxicity and demonstrate that using surface charge data to guide the design of nanogels for drug delivery may be insufficient.
Journal Article
Imidazole-Based Monomer as Functional Unit for the Specific Detection of Paraxanthine in Aqueous Environments
by
Anastasiadi, Rozalia-Maria
,
Resmini, Marina
,
Traldi, Federico
in
4-vinylimidazole
,
Aqueous environments
,
Binding
2022
In the context of personalized medicine, the paraxanthine-to-caffeine ratio is an accepted standard for the optimization of the dose-response effect of many pharmaceuticals in individual patients. There is a strong drive towards the development of cheaper and portable devices for the detection of biomarkers, including paraxanthine and caffeine, which requires materials with high binding efficiency and specificity. We designed a recognition unit specific for paraxanthine which can discriminate molecules with small structural differences and can be used to increase the sensitivity of sensors. A number of functional units were screened by nuclear magnetic resonance for their ability to form specific binding interactions with paraxanthine in water and negligible interactions with its structural analogue caffeine. Imidazole was identified as the unit showing the most promising results and its two polymerizable derivatives were evaluated by isothermal titration calorimetry to identify the best monomer. The data suggested that 4-vinylimidazole was the most promising unit forming specific and strong binding interaction with paraxanthine. The calorimetry experiments allowed also the determination of the thermodynamic parameters of all interactions and the association constant values. Optimization of polymerization protocols in water, achieving high monomer conversions and chemical yields, demonstrate the suitability of the selected functional monomer for polymer preparations, targeting the detection of paraxanthine in aqueous environments.
Journal Article
Simultaneous Quantification of Antioxidants Paraxanthine and Caffeine in Human Saliva by Electrochemical Sensing for CYP1A2 Phenotyping
by
Anastasiadi, Rozalia-Maria
,
Resmini, Marina
,
Colomban, Silvia
in
Acids
,
Adenosine
,
Alzheimer's disease
2020
The enzyme CYP1A2 is responsible for the metabolism of numerous antioxidants in the body, including caffeine, which is transformed into paraxanthine, its main primary metabolite. Both molecules are known for their antioxidant and pro-oxidant characteristics, and the paraxanthine-to-caffeine molar ratio is a widely accepted metric for CYP1A2 phenotyping, to optimize dose–response effects in individual patients. We developed a simple, cheap and fast electrochemical based method for the simultaneous quantification of paraxanthine and caffeine in human saliva, by differential pulse voltammetry, using an anodically pretreated glassy carbon electrode. Cyclic voltammetry experiments revealed for the first time that the oxidation of paraxanthine is diffusion controlled with an irreversible peak at ca. +1.24 V (vs. Ag/AgCl) in a 0.1 M H2SO4 solution, and that the mechanism occurs via the transfer of two electrons and two protons. The simultaneous quantification of paraxanthine and caffeine was demonstrated in 0.1 M H2SO4 and spiked human saliva samples. In the latter case, limits of detection of 2.89 μM for paraxanthine and 5.80 μM for caffeine were obtained, respectively. The sensor is reliable, providing a relative standard deviation within 7% (n = 6). Potential applicability of the sensing platform was demonstrated by running a small scale trial on five healthy volunteers, with simultaneous quantification by differential pulse voltammetry (DPV) of paraxanthine and caffeine in saliva samples collected at 1, 3 and 6 h postdose administration. The results were validated by ultra-high pressure liquid chromatography and shown to have a high correlation factor (r = 0.994).
Journal Article
Fluorescent Imprinted Nanoparticles for the Effective Monitoring of Irinotecan in Human Plasma
2020
Fluorescent, imprinted nanosized polymers for the detection of irinotecan have been synthesised using a napthalimide polymerisable derivative (2-allyl-6-[2-(aminoethyl)-amino] napthalimide) as functional monomer. The imprinted polymers contain ethylene glycol dimethacrylate (EGDMA) as a cross-linker and were prepared by high dilution radical polymerisation in dimethylsulphoxide (DMSO). The material was able to rebind irinotecan up to 18 nmol/mg with good specificity. Fluorescence emission at 525 nm (excitation at 448 nm) was quenched by increasing concentrations of irinotecan via a static mechanism and also in analytically useful environments as mixtures of human plasma and organic solvents. This allowed the direct detection of irinotecan (in the 10–30 μM range) in human plasma treated with acetonitrile; the limit of detection (LOD) was 9.4 nM, with within-run variability of 10% and day-to-day variability of 13%.
Journal Article
Imprinted nanomaterials: a new class of synthetic receptors
2009
The molecular imprinting approach provides a unique opportunity for the creation of three-dimensional cavities with tailored recognition properties. Over the last decade this field has expanded considerably, across a variety of disciplines, leading to novel approaches and many potential applications. Progress in the field of materials science has led to significant breakthroughs and the application of the imprinting approach to novel polymeric formats offers new insights and attractive methods for the preparation of synthetic receptors. In particular, nanomaterials have received considerable attention in the developing field of nanotechnology. With a large number of recent developments in the field of molecular imprinting available, this article is focused on a selection of new systems, in particular the different formats of nanomaterials, such as nanogels, nanofibres, nanowires and nanotubes.
Journal Article
Towards point of care systems for the therapeutic drug monitoring of imatinib
2020
Therapeutic drug monitoring is used in the clinical setting in the optimisation of dosages to overcome inter-patient pharmacokinetic variability, increasing efficacy whilst reducing toxicity. Imatinib is a tyrosine kinase inhibitor, displaying large variations in plasma concentrations that impact therapeutic success. As a result, imatinib has been the focus in the development of innovative techniques, aimed at its quantification in plasma. Liquid chromatography coupled with tandem mass spectrometry is currently the gold standard; however, cost and availability of the equipment limit its wider application in clinical settings. Recent advances in the field have shown Raman spectroscopy and electrochemistry to be key techniques for the development of promising analytical tools. This article reviews the latest advances towards less costly, more portable solutions that can be used at the point of care.
Journal Article
NIPAm Microgels Synthesised in Water: Tailored Control of Particles’ Size and Thermoresponsive Properties
2024
Microgels, combining the properties of hydrogels and microparticles, are emerging as versatile materials for varied applications such as drug delivery and sensing, although the precise control of particle size remains a challenge. Advances in synthetic methodologies have provided new tools for tailoring of properties, however costs and scalability of the processes remains a limitation. We report here the water-based synthesis of a library of N-isopropylacrylamide-based microgels covalently crosslinked with varying contents of N,N′-methylenebisacrylamide. The results highlight the versatility of water as a synthetic medium, which yields large and monodisperse microgels, with excellent control over size. Dynamic light scattering data demonstrate that by increasing the total monomer concentration from 1 to 3 wt%, the particle size is increased by up to 4.9-fold. Crosslinker content allows fine-tuning of microgel size, with greater relevance for functionalised microgels. Functional co-monomers such as N-(3-aminopropyl)methacrylamide hydrochloride and N-(hydroxymethyl)acrylamide are shown to influence size and thermoresponsive behaviour, with hydrogen-bonding monomers reducing particle size and increasing the volume phase transition temperature by 2 °C. Positively charged monomers show a size reduction upon heating but provide colloidal stability at temperatures up to 60 °C. These findings emphasize the importance of tailoring synthetic conditions and formulations to optimize microgel properties for specific applications.
Journal Article
Protein-Nanoparticle Interactions Govern the Interfacial Behavior of Polymeric Nanogels: Study of Protein Corona Formation at the Air/Water Interface
2023
Biomedical applications of nanoparticles require a fundamental understanding of their interactions and behavior with biological interfaces. Protein corona formation can alter the morphology and properties of nanomaterials, and knowledge of the interfacial behavior of the complexes, using in situ analytical techniques, will impact the development of nanocarriers to maximize uptake and permeability at cellular interfaces. In this study we evaluate the interactions of acrylamide-based nanogels, with neutral, positive, and negative charges, with serum-abundant proteins albumin, fibrinogen, and immunoglobulin G. The formation of a protein corona complex between positively charged nanoparticles and albumin is characterized by dynamic light scattering, circular dichroism, and surface tensiometry; we use neutron reflectometry to resolve the complex structure at the air/water interface and demonstrate the effect of increased protein concentration on the interface. Surface tensiometry data suggest that the structure of the proteins can impact the interfacial properties of the complex formed. These results contribute to the understanding of the factors that influence the bio-nano interface, which will help to design nanomaterials with improved properties for applications in drug delivery.
Journal Article
Influence of Buffers, Ionic Strength, and pH on the Volume Phase Transition Behavior of Acrylamide-Based Nanogels
2020
The use of covalently crosslinked nanogels for applications in biology and medicine is dependent on their properties and characteristics, which often change because of the biological media involved. Understanding the role of salts, ionic strength and pH in altering specific properties is key to progress in this area. We studied the effect of both chemical structure and media environment on the thermoresponsive behavior of nanogels. A small library of methylenebisacrylamide (MBA) crosslinked nanogels were prepared using N-isopropylacrylamide (NIPAM) or N-n-propylacrylamide (NPAM), in combination with functional monomers N-hydroxyethylacrylamide (HEAM) and N-acryloyl-l-proline (APrOH). The thermoresponsive properties of nanogels were evaluated in phosphate buffer, tris-acetate buffer and Ringer HEPES, with varying concentrations and ionic strengths. The presence of ions facilitates the phase separation of nanogels, and this “salting-out” effect strongly depends on the electrolyte concentration as well as the specificity of individual anions, e.g., their positions in the Hofmeister series. A subtle change in the chemical structure of the side chain of the monomer from NIPAM to NPAM leads to a reduction of the volume phase transition temperature (VPTT) value by ~10 °C. The addition of hydrophilic comonomers such as HEAM, on the other hand, causes a ~20 °C shift in VPTT to higher values. The data highlight the significant role played by the chemical structure of the monomers used, with hydrophobicity and rigidity closely interlinked in determining thermoresponsive behavior. Furthermore, the volume phase transition temperature (VPTT) of nanogels copolymerized with ionizable APrOH comonomer can be tailored by changes in the pH of buffer solutions. This temperature-controlled phase transition is driven by intricate interplay involving the entropy of mixing, electrostatic interactions, conformational transitions, and structural rigidity. These results highlight the importance of understanding the physiochemical properties and behavior of covalently crosslinked nanogels in a biological environment prior to their applications in life-science, such as temperature/pH-triggered drug delivery systems.
Journal Article