Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
46 result(s) for "Resplandy, Laure"
Sort by:
The land-to-ocean loops of the global carbon cycle
Carbon storage by the ocean and by the land is usually quantified separately, and does not fully take into account the land-to-ocean transport of carbon through inland waters, estuaries, tidal wetlands and continental shelf waters—the ‘land-to-ocean aquatic continuum’ (LOAC). Here we assess LOAC carbon cycling before the industrial period and perturbed by direct human interventions, including climate change. In our view of the global carbon cycle, the traditional ‘long-range loop’, which carries carbon from terrestrial ecosystems to the open ocean through rivers, is reinforced by two ‘short-range loops’ that carry carbon from terrestrial ecosystems to inland waters and from tidal wetlands to the open ocean. Using a mass-balance approach, we find that the pre-industrial uptake of atmospheric carbon dioxide by terrestrial ecosystems transferred to the ocean and outgassed back to the atmosphere amounts to 0.65 ± 0.30 petagrams of carbon per year (±2 sigma). Humans have accelerated the cycling of carbon between terrestrial ecosystems, inland waters and the atmosphere, and decreased the uptake of atmospheric carbon dioxide from tidal wetlands and submerged vegetation. Ignoring these changing LOAC carbon fluxes results in an overestimation of carbon storage in terrestrial ecosystems by 0.6 ± 0.4 petagrams of carbon per year, and an underestimation of sedimentary and oceanic carbon storage. We identify knowledge gaps that are key to reduce uncertainties in future assessments of LOAC fluxes. An assessment of the land-to-ocean cycling of carbon through inland waters, estuaries, tidal wetlands and continental shelf waters provides a perspective on the global carbon cycle and identifies key knowledge gaps.
Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis
A decrease in the 13C/12C ratio of atmospheric CO₂ has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13C-Suess effect, is driven primarily by the input of fossil fuel-derived CO₂ but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO₂ from fossil fuel, land, and oceans can explain the observed 13C-Suess effect unless an increase has occurred in the 13C/12C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO₂ levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C₃ plants at times of altered atmospheric CO₂, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm−1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO₂ partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO₂ concentration.
Pacific Decadal Oscillation Influences Tropical Oxygen Minimum Zone Extent and Obscures Anthropogenic Changes
Observations suggest that the tropical Pacific Ocean has lost oxygen since the 1960s leading to the expansion of its oxygen minimum zone (OMZ). Attribution to anthropogenic forcing is, however, difficult because of limited data availability and the large natural variability introduced by the Pacific Decadal Oscillation (PDO). Here, we evaluate the PDO influence on oxygen dynamics and OMZ extent using observations and hindcast simulations from two global ocean circulation models (NEMO‐PISCES, MOM6‐COBALT). In both models, the tropical Pacific oxygen content decreases by about 30 Tmol.decade−1 and the OMZ volume expands by 1.3 × 105 km3.decade−1 during PDO positive phases, while variations of similar magnitude but opposite sign are simulated during negative phases. Changes in equatorial advective oxygen supply, partially offset by biological demand, control the oxygen response to PDO. Observations which cover 39% of the tropical Pacific volume only partially capture spatio‐temporal variability, hindering the separation of anthropogenic trend from natural variations. Plain Language Summary Human activities cause oxygen loss in the ocean, which leads to the expansion of areas with very low oxygen concentrations located in the tropics called oxygen minimum zones (OMZ). Understanding the dynamics of OMZs is crucial because they produce greenhouse gasses and are unsuitable for the life of most large marine organisms. Quantifying the response of OMZs is however complicated by natural variability that superimposes on human‐induced changes. In the Pacific Ocean, one of the strongest natural variability phenomena is the Pacific Decadal Oscillation. We used data and numerical models to assess the magnitude of oxygen changes caused by this natural phenomena in the tropical Pacific Ocean, and show that they are comparable to that of human‐induced oxygen changes. We highlight that more oxygen data is needed to accurately separate natural variations from human‐induced changes, and that a fraction of the oxygen loss attributed to human activities in prior work could in fact be due to natural variability. Key Points Pacific Decadal Oscillation (PDO) modulates tropical Pacific oxygen content and oxygen minimum zone volume on decadal time scales The PDO‐induced variations are of the same order of magnitude as the anthropogenic deoxygenation signal Currently available data are too sparse to resolve and isolate the PDO‐induced and anthropogenic signals
Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget
Based on the 2019 assessment of the Global Carbon Project, the ocean took up on average, 2.5+/-0.6PgCyr-1 or 23+/-5% of the total anthropogenic CO2 emissions over the decade 2009-2018. This sink estimate is based on global ocean biogeochemical models (GOBMs) and is compared to data-products based on surface ocean pCO2 (partial pressure of CO2) observations accounting for the outgassing of river-derived CO2. Here we evaluate the GOBM simulations by comparing the simulated pCO2 to observations. The simulations are well suited for quantifying the global ocean carbon sink on the time-scale of the annual mean and its multi-decadal trend (RMSE <20 μatm), as well as on the time-scale of multi-year variability (RMSE <10 μatm), despite the large model-data mismatch on the seasonal time-scale (RMSE of 20-80 μatm). Biases in GOBMs have a small effect on the global mean ocean sink (0.05 PgC yr−1), but need to be addressed to improve the regional budgets and model-data comparison. Accounting for non-mapped areas in the data-products reduces their spread as measured by the standard deviation by a third. There is growing evidence and consistency among methods with regard to the patterns of the multi-year variability of the ocean carbon sink, with a global stagnation in the 1990s and an extra-tropical strengthening in the 2000s. GOBMs and data-products point consistently to a shift from a tropical CO2 source to a CO2 sink in recent years. On average, the GOBMs reveal less variations in the sink than the data-based products. Despite the reasonable simulation of surface ocean pCO2 by the GOBMs, there are discrepancies between the resulting sink estimate from GOBMs and data-products. These discrepancies are within the uncertainty of the river flux adjustment, increase over time, and largely stem from the Southern Ocean. Progress in our understanding of the global ocean carbon sink necessitates significant advancement in modelling and observing the Southern Ocean including (i) a game-changing increase in high-quality pCO2 observations, and (ii) a critical re-evaluation of the regional river flux adjustment.
Coastal sink outpaces open ocean
The ocean stores about 30% of the carbon emitted by human activities, regulating atmospheric CO2 levels and the Earth’s climate. Research suggests that this uptake of CO2 has strengthened much faster in coastal ocean waters than in the open ocean due to enhanced biological activity.
Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming World
Global ocean oxygen loss is projected to persist in the future, but Earth system models (ESMs) have not yet provided a consistent picture of how it will influence the largest oxygen minimum zone (OMZ) in the tropical Pacific. We examine the change in the Pacific OMZ volume in an ensemble of ESMs from the CMIP6 archive, considering a broad range of oxygen (O2) thresholds relevant to biogeochemical cycles and ecosystems (5–160 µmol/kg). Despite OMZ biases in the historical period of the simulations, the ESM ensemble projections consistently fall into three regimes across ESMs: an expansion of low oxygenated waters (+0.8 [0.6, 1.0] × 1016 m3/century for O2 ≤ 120 µmol/kg, ESM median and interquartile range); a slight contraction of the OMZ core although more uncertain across ESMs (−0.1 [−0.5, 0.0] × 1016 m3/century for O2 ≤ 20 µmol/kg); and at the transition from contraction to expansion regimes, a spatial redistribution but near‐zero change in the volume of hypoxic waters (0.0 [−0.3, +0.1] × 1016 m3/century for O2 ≤ 60 µmol/kg). Changes in circulation and biology dictate the shift from expansion to contraction. Specifically, reduced subtropical ventilation controls the expansion of low oxygenated waters, while a combination of circulation and biological changes explains the contraction of the core (likely changes in mixing, reduced intermediate ventilation and oxygen demand). Increased model complexity (e.g., ecosystem dynamics and equatorial circulation) likely stabilize the OMZ response, suggesting that future changes might lie in the lower bound of current projections. The expansion of low oxygenated waters which delimit the optimum habitat of numerous marine species would severely impact ecosystems and ecosystem services. Plain Language Summary Expansion of ocean areas with low oxygen concentrations threatens marine animals and could increase the production of greenhouse gases that warm the Earth. An essential question is how these low oxygen “blobs,” called oxygen minimum zones (OMZs), will evolve in the future. OMZs are difficult to simulate in climate models because they result from two strongly opposing processes: Physical supply of oxygen via the ocean circulation and oxygen consumption by biological respiration. Previous studies using older generations of models could not conclude whether the largest of these zones in the Pacific would grow or shrink in the future. We show that the Pacific OMZ will grow in response to climate change but that its core—where oxygen is lowest—will shrink. This expansion of the broad OMZ is caused by a weaker supply of oxygen rich waters by ocean circulation, whereas the contraction of the OMZ is influenced by a combination of changes in ocean circulation and biological activity. The expansion of the outer OMZ is likely bad news for the marine species that suffer in low oxygen conditions, and the people that depend on them (fishing and tourism). Key Points The Pacific oxygen minimum zone (OMZ) will expand but its core might contract under sustained anthropogenic forcing Non‐thermal changes (ocean circulation and biology) dictate the shift from core contraction to OMZ expansion The OMZ expansion would compress the habitat of marine species and impact ecosystems and ecosystem services
Climate change and oxygen in the ocean
OCEANOGRAPHY Computer simulations show that areas of the ocean that have low levels of dissolved oxygen will expand, but then shrink, in response to global warming - adding to an emerging picture of the finely balanced processes involved. The findings suggest that about half of the OMZ expansion that occurred between 1900 and 2150 could be reversed by the year 2300. [...]the core of the OMZ (the region that has the lowest levels of dissolved oxygen) might contract to become smaller than it was in pre-industrial times, and could possibly act as a negative climate feedback that dampens global warming. [...]Earth-system models agree on many aspects of future OMZs.
A framework to evaluate and elucidate the driving mechanisms of coastal sea surface pCO2 seasonality using an ocean general circulation model (MOM6-COBALT)
The temporal variability of the sea surface partial pressure of CO2 (pCO2) and the underlying processes driving this variability are poorly understood in the coastal ocean. In this study, we tailor an existing method that quantifies the effects of thermal changes, biological activity, ocean circulation and freshwater fluxes to examine seasonal pCO2 changes in highly variable coastal environments. We first use the Modular Ocean Model version 6 (MOM6) and biogeochemical module Carbon Ocean Biogeochemistry And Lower Trophics version 2 (COBALTv2) at a half-degree resolution to simulate coastal CO2 dynamics and evaluate them against pCO2 from the Surface Ocean CO2 Atlas database (SOCAT) and from the continuous coastal pCO2 product generated from SOCAT by a two-step neuronal network interpolation method (coastal Self-Organizing Map Feed-Forward neural Network SOM-FFN, Laruelle et al., 2017). The MOM6-COBALT model reproduces the observed spatiotemporal variability not only in pCO2 but also in sea surface temperature, salinity and nutrients in most coastal environments, except in a few specific regions such as marginal seas. Based on this evaluation, we identify coastal regions of “high” and “medium” agreement between model and coastal SOM-FFN where the drivers of coastal pCO2 seasonal changes can be examined with reasonable confidence. Second, we apply our decomposition method in three contrasted coastal regions: an eastern (US East Coast) and a western (the Californian Current) boundary current and a polar coastal region (the Norwegian Basin). Results show that differences in pCO2 seasonality in the three regions are controlled by the balance between ocean circulation and biological and thermal changes. Circulation controls the pCO2 seasonality in the Californian Current; biological activity controlspCO2 in the Norwegian Basin; and the interplay between biological processes and thermal and circulation changes is key on the US East Coast. The refined approach presented here allows the attribution of pCO2 changes with small residual biases in the coastal ocean, allowing for future work on the mechanisms controlling coastal air–sea CO2 exchanges and how they are likely to be affected by future changes in sea surface temperature, hydrodynamics and biological dynamics.
Positive Indian Ocean Dipole events prevent anoxia off the west coast of India
The seasonal upwelling along the west coast of India (WCI) brings nutrient-rich, oxygen-poor subsurface waters to the continental shelf, favoring very low oxygen concentrations in the surface waters during late boreal summer and fall. This yearly-recurring coastal hypoxia is more severe during some years, leading to coastal anoxia that has strong impacts on the living resources. In the present study, we analyze a 1/4° resolution coupled physical–biogeochemical regional oceanic simulation over the 1960–2012 period to investigate the physical processes influencing the oxycline interannual variability off the WCI, that being a proxy for the variability on the shelf in our model. Our analysis indicates a tight relationship between the oxycline and thermocline variations in this region on both seasonal and interannual timescales, thereby revealing a strong physical control of the oxycline variability. As in observations, our model exhibits a shallow oxycline and thermocline during fall that combines with interannual variations to create a window of opportunity for coastal anoxic events. We further demonstrate that the boreal fall oxycline fluctuations off the WCI are strongly related to the Indian Ocean Dipole (IOD), with an asymmetric influence of its positive and negative phases. Positive IODs are associated with easterly wind anomalies near the southern tip of India. These winds force downwelling coastal Kelvin waves that propagate along the WCI and deepen the thermocline and oxycline there, thus preventing the occurrence of coastal anoxia. On the other hand, negative IODs are associated with WCI thermocline and oxycline anomalies of opposite sign but of smaller amplitude, so that the negative or neutral IOD phases are necessary but not the sufficient condition for coastal anoxia. As the IODs generally start developing in summer, these findings suggest some predictability to the occurrence of coastal anoxia off the WCI a couple of months ahead.
Decadal acidification in the water masses of the Atlantic Ocean
Global ocean acidification is caused primarily by the ocean’s uptake of CO₂ as a consequence of increasing atmospheric CO₂ levels. We present observations of the oceanic decrease in pH at the basin scale (50°S–36°N) for the Atlantic Ocean over two decades (1993–2013). Changes in pH associated with the uptake of anthropogenic CO₂ (ΔpHCant) and with variations caused by biological activity and ocean circulation (ΔpHNat) are evaluated for different water masses. Output from an Institut Pierre Simon Laplace climate model is used to place the results into a longer-term perspective and to elucidate the mechanisms responsible for pH change. The largest decreases in pH (ΔpH) were observed in central, mode, and intermediate waters, with a maximum ΔpH value in South Atlantic Central Waters of −0.042 ± 0.003. The ΔpH trended toward zero in deep and bottom waters. Observations and model results show that pH changes generally are dominated by the anthropogenic component, which accounts for rates between −0.0015 and −0.0020/y in the central waters. The anthropogenic and natural components are of the same order of magnitude and reinforce one another in mode and intermediate waters over the time period. Large negative ΔpHNat values observed in mode and intermediate waters are driven primarily by changes in CO₂ content and are consistent with (i) a poleward shift of the formation region during the positive phase of the Southern Annular Mode in the South Atlantic and (ii) an increase in the rate of the water mass formation in the North Atlantic.