Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
27
result(s) for
"Restaino, Odile Francesca"
Sort by:
Streptomycetes as platform for biotechnological production processes of drugs
2021
Streptomyces is one of the most versatile genera for biotechnological applications, widely employed as platform in the production of drugs. Although streptomycetes have a complex life cycle and metabolism that would need multidisciplinary approaches, review papers have generally reported only studies on single aspects like the isolation of new strains and metabolites, morphology investigations, and genetic or metabolic studies. Besides, even if streptomycetes are extensively used in industry, very few review papers have focused their attention on the technical aspects of biotechnological processes of drug production and bioconversion and on the key parameters that have to be set up. This mini-review extensively illustrates the most innovative developments and progresses in biotechnological production and bioconversion processes of antibiotics, immunosuppressant, anticancer, steroidal drugs, and anthelmintic agents by streptomycetes, focusing on the process development aspects, describing the different approaches and technologies used in order to improve the production yields. The influence of nutrients and oxygen on streptomycetes metabolism, new fed-batch fermentation strategies, innovative precursor supplementation approaches, and specific bioreactor design as well as biotechnological strategies coupled with metabolic engineering and genetic tools for strain improvement is described. The use of whole, free, and immobilized cells on unusual supports was also reported for bioconversion processes of drugs. The most outstanding thirty investigations published in the last 8 years are here reported while future trends and perspectives of biotechnological research in the field have been illustrated.Key points• Updated Streptomyces biotechnological processes for drug production are reported.• Innovative approaches for Streptomyces-based biotransformation of drugs are reviewed.• News about fermentation and genome systems to enhance secondary metabolite production.
Journal Article
Lignin/Carbohydrate Complex Isolated from Posidonia oceanica Sea Balls (Egagropili): Characterization and Antioxidant Reinforcement of Protein-Based Films
by
Restaino, Odile Francesca
,
Mirpoor, Seyedeh Fatemeh
,
Ruffo, Francesco
in
Acids
,
Biomass
,
Carbohydrates
2021
A lignin fraction (LF) was extracted from the sea balls of Posidonia oceanica (egagropili) and extensively dialyzed and characterized by FT-IR and NMR analyses. LF resulted water soluble and exhibited a brownish-to-black color with the highest absorbance in the range of 250–400 nm, attributed to the chromophore functional groups present in the phenylpropane-based polymer. LF high-performance size exclusion chromatography analysis showed a highly represented (98.77%) species of 34.75 kDa molecular weight with a polydispersity index of 1.10 and an intrinsic viscosity of 0.15. Quantitative analysis of carbohydrates indicated that they represented 28.3% of the dry weight of the untreated egagropili fibers and 72.5% of that of LF. In particular, eight different monosaccharides were detected (fucose, arabinose, rhamnose, galactose, glucose, xylose, glucosamine and glucuronic acid), glucuronic acid (46.6%) and rhamnose (29.6%) being the most present monosaccharides in the LF. Almost all the phenol content of LF (113.85 ± 5.87 mg gallic acid eq/g of extract) was water soluble, whereas around 22% of it consisted of flavonoids and only 10% of the flavonoids consisted of anthocyanins. Therefore, LF isolated from egagropili lignocellulosic material could be defined as a water-soluble lignin/carbohydrate complex (LCC) formed by a phenol polymeric chain covalently bound to hemicellulose fragments. LCC exhibited a remarkable antioxidant activity that remained quite stable during 6 months and could be easily incorporated into a protein-based film and released from the latter overtime. These findings suggest egagropili LCC as a suitable candidate as an antioxidant additive for the reinforcement of packaging of foods with high susceptibility to be deteriorated in aerobic conditions.
Journal Article
Biotechnological Transformation of Hydrocortisone into 16α-Hydroxyprednisolone by Coupling Arthrobacter simplex and Streptomyces roseochromogenes
by
Restaino, Odile Francesca
,
Schiraldi, Chiara
,
Cammarota, Marcella
in
16α-hydroxyhydrocortisone
,
16α-hydroxyprednisolone
,
Arthrobacter - metabolism
2020
16α-Hydroxyprednisolone, an anti-inflammatory drug, could be potentially obtained from hydrocortisone bioconversion by combining a 1,2-dehydrogenation reaction performed by Arthrobacter simplexATCC31652 with a 16α-hydroxylation reaction by Streptomyces roseochromogenes ATCC13400. In this study we tested, for the first time, potential approaches to couple the two reactions using similar pH and temperature conditions for hydrocortisone bioconversion by the two strains. The A. simplex capability to 1,2-dehydrogenate the 16α-hydroxyhydrocortisone, the product of S. roseochromogenes transformation of hydrocortisone, and vice versa the capability of S. roseochromogenes to 16α-hydroxylate the prednisolone were assessed. Bioconversions were studied in shake flasks and strain morphology changes were observed by SEM. Whole cell experiments were set up to perform the two reactions in a sequential mode in alternate order or contemporarily at diverse temperature conditions. A. simplex catalyzed either the dehydrogenation of hydrocortisone into prednisolone efficiently or of 16α-hydroxyhydrocortisone into 16α-hydroxyprednisolone in 24 h (up to 93.9%). Surprisingly S. roseochromogenes partially converted prednisolone back to hydrocortisone. A 68.8% maximum of 16α-hydroxyprednisolone was obtained in 120-h bioconversion by coupling whole cells of the two strains at pH 6.0 and 26 °C. High bioconversion of hydrocortisone into 16α-hydroxyprednisolone was obtained for the first time by coupling A. simplex and S. roseochromogenes.
Journal Article
Biotechnological Production and Characterization of Extracellular Melanin by Streptomyces nashvillensis
by
Restaino, Odile Francesca
,
Rippa, Massimo
,
Mariniello, Loredana
in
Antimicrobial agents
,
antioxidant
,
antioxidants
2024
Melanins are pigments employed in food, cosmetic, and textile industries, manufactured by extraction from cuttlefishes. Their biotechnological production by Streptomycetes, instead, has been poorly investigated so far. In this paper, for the first time, the strain Streptomyces nashvillensis DSM 40314 was tested as an extracellular melanin producer by investigating the influence of diverse temperatures (26, 28, and 30 °C) and pH values (6.0 and 7.0) on bacterial growth, melanin production, and on the activity of the secreted tyrosinase, the first enzyme of the pigment biosynthetic pathway. In physiological 96-h shake flask experiments, the optimal growth parameters resulted to be 28 °C and pH 7.0, at which a maximum biomass of 8.4 ± 0.5 gcdw/L, a melanin concentration of 0.74 ± 0.01 g/L (yield on biomass of 0.09 ± 0.01 g/gcdw and productivity of 0.008 ± 0.001 g/L/h), and a final tyrosinase activity of 10.1 ± 0.1 U/mL were reached. The produced pigment was purified from the broth supernatant with a two-step purification process (75.0 ± 2.0% of purity with 65.0 ± 5.0% of recovery) and tested for its chemical, antioxidant, and photoprotective properties. Finally, characterization by UV-visible and FT-IR spectroscopy, elemental analyses, and mono- and bi-dimensional NMR suggested the eumelanin-like nature of the pigment.
Journal Article
Chondroitin Sulfate in USA Dietary Supplements in Comparison to Pharma Grade Products: Analytical Fingerprint and Potential Anti-Inflammatory Effect on Human Osteoartritic Chondrocytes and Synoviocytes
by
Restaino, Odile Francesca
,
Vassallo, Valentina
,
Finamore, Rosario
in
anion exchange chromatography (HPAE-PAD)
,
Arthritis
,
Biological activity
2021
The biological activity of chondroitin sulfate (CS) and glucosamine (GlcN) food supplements (FS), sold in USA against osteoarthritis, might depend on the effective CS and GlcN contents and on the CS structural characteristics. In this paper three USA FS were compared to two pharmaceutical products (Ph). Analyses performed by HPAE-PAD, by HPCE and by SEC-TDA revealed that the CS and GlcN titers were up to −68.8% lower than the contents declared on the labels and that CS of mixed animal origin and variable molecular weights was present together with undesired keratan sulfate. Simulated gastric and intestinal digestions were performed in vitro to evaluate the real CS amount that may reach the gut as biopolymer. Chondrocytes and synoviocytes primary cells derived from human pathological joints were used to assess: cell viability, modulation of the NF-κB, quantification of cartilage oligomeric matrix protein (COMP-2), hyaluronate synthase enzyme (HAS-1), pentraxin (PTX-3) and the secreted IL-6 and IL-8 to assess inflammation. Of the three FS tested only one (US FS1) enhanced chondrocytes viability, while all of them supported synoviocytes growth. Although US FS1 proved to be less effective than Ph as it reduced NF-kB, it could not down-regulate COMP-2; HAS-1 was up-regulated but with a lower efficacy. Inflammatory cytokines were markedly reduced by Ph while a slight decrease was only found for US-FS1.
Journal Article
High yield production and purification of two recombinant thermostable phosphotriesterase-like lactonases from Sulfolobus acidocaldarius and Sulfolobus solfataricus useful as bioremediation tools and bioscavengers
by
Restaino, Odile Francesca
,
Porzio, Elena
,
Alfano, Alberto
in
Applied Microbiology
,
Archaea
,
Archaeal Proteins - genetics
2018
Background
Thermostable phosphotriesterase-like lactonases (PLLs) are able to degrade organophosphates and could be potentially employed as bioremediation tools and bioscavengers. But nowadays their manufacturing in high yields is still an issue that limits their industrial applications. In this work we aimed to set up a high yield production and purification biotechnological process of two recombinant PLLs expressed in
E. coli
, the
wild type Sac
Pox from
Sulfolobus acidocaldarius
and a triple mutated
Sso
Pox C258L/I261F/W263A, originally from
Sulfolobus solfataricus.
To follow this aim new induction approaches were investigated to boost the enzyme production, high cell density fermentation strategies were set-up to reach higher and higher enzyme yields up to 22-L scale, a downstream train was studied to meet the requirements of an efficient industrial purification process.
Results
Physiological studies in shake flasks demonstrated that the use of galactose as inducer increased the enzyme concentrations up to 4.5 folds, compared to the production obtained by induction with IPTG. Optimising high cell density fed-batch strategies the production and the productivity of both enzymes were further enhanced of 26 folds, up to 2300 U·L
− 1
and 47.1 U·L
− 1
·h
− 1
for
Sac
Pox and to 8700 U·L
− 1
and 180.6 U·L
− 1
·h
− 1
for
Sso
Pox C258L/I261F/W263A, and the fermentation processes resulted scalable from 2.5 to 22.0 L. After being produced and extracted from the cells, the enzymes were first purified by a thermo-precipitation step, whose conditions were optimised by response surface methodology. A following ultra-filtration process on 100 and 5 KDa cut-off membranes drove to a final pureness and a total recovery of both enzymes of 70.0 ± 2.0%, suitable for industrial applications.
Conclusions
In this paper, for the first time, a high yield biotechnological manufacturing process of the recombinant enzymes
Sac
Pox and
Sso
Pox C258L/I261F/W263A was set-up. The enzyme production was boosted by combining a new galactose induction approach with high cell density fed-batch fermentation strategies. An efficient enzyme purification protocol was designed coupling a thermo-precipitation step with a following membrane-based ultra-filtration process.
Journal Article
Cellulose from Posidonia oceanica Sea Balls (Egagropili) as Substrate to Enhance Streptomyces roseochromogenes Cellulase Biosynthesis
by
Restaino, Odile Francesca
,
Vassallo, Valentina
,
Cuomo, Sabrina
in
Biosynthesis
,
Cell culture
,
Cellulase
2023
Enhancing Streptomyces cellulase production by supplying lignocellulose biomasses has been poorly investigated so far. In this research the biosynthesis of Streptomyces roseochromogenes ATCC13400 cellulases was increased for the first time by addition of a cellulose fraction (2.5 g·L−1) to the growth medium, isolated from the marine origin Posidonia oceanica sea balls, generally called egagropili.. In shake flasks the cellulase production increased of 4.3 folds, compared to the control, up to 268 U·L−1 in 72 h, with a productivity of 3.7 U·L−1·h−1, while in batch it was further enhanced up to 347 U·L−1 in 45 h with a doubled productivity of 7.7 U·L−1·h−1 A downstream protocol was set up by coupling two ultrafiltration steps on 10 and 3 kDa membranes to recover the enzymes from the supernatant. A pool of three cellulases, having molecular weights between 115 and 47 kDa, was recovered. The optimal conditions for their enzymatic activity were 60 °C and pH 5.0, and they showed CMCase, FPase and β-glucosidase action. In conclusion, S. roseochromogenes might be considered a new cell factory for cellulase biotechnological production that might be enhanced by using the cellulose from egagropili, a well-known marine origin plant waste, as the substrate.
Journal Article
Optimization of Pre-Inoculum, Fermentation Process Parameters and Precursor Supplementation Conditions to Enhance Apigenin Production by a Recombinant Streptomyces albus Strain
by
Restaino, Odile Francesca
,
Villar, Claudio J.
,
Gutiérrez-del-Río, Ignacio
in
Aeration
,
agitation
,
apigenin
2021
Streptomyces albus J1074-pAPI (Streptomyces albus-pAPI) is a recombinant strain constructed to biotechnologically produce apigenin, a flavonoid with interesting bioactive features that up to now has been manufactured by extraction from plants with long and not environmentally friendly procedures. So far, in literature, only a maximum apigenin concentration of 80.0 µg·L−1 has been obtained in shake flasks. In this paper, three integrated fermentation strategies were exploited to enhance the apigenin production by Streptomyces albus J1074-pAPI, combining specific approaches for pre-inoculum conditions, optimization of fermentation process parameters and supplementation of precursors. Using a pre-inoculum of mycelium, the apigenin concentration increased of 1.8-fold in shake flask physiological studies. In 2L batch fermentation, the aeration and stirring conditions were optimized and integrated with the new inoculum approach and the apigenin production reached 184.8 ± 4.0 µg·L−1, with a productivity of 2.6 ± 0.1 μg·L−1·h−1. The supplementation of 1.5 mM L-tyrosine in batch fermentations allowed to obtain an apigenin production of 343.3 ± 3.0 µg·L−1 in only 48 h, with an increased productivity of 7.1 ± 0.1 μg·L−1·h−1. This work demonstrates that the optimization of fermentation process conditions is a crucial requirement to increase the apigenin concentration and productivity by up to 4.3- and 10.7-fold.
Journal Article
Streptomycetes as Microbial Cell Factories for the Biotechnological Production of Melanin
by
Restaino, Odile Francesca
,
Kordjazi, Talayeh
,
Mariniello, Loredana
in
Actinomycetales
,
Amino acids
,
Animals
2024
Melanins are complex, polymeric pigments with interesting properties like UV-light absorbance ability, metal ion chelation capacity, antimicrobial action, redox behaviors, and scavenging properties. Based on these characteristics, melanins might be applied in different industrial fields like food packaging, environmental bioremediation, and bioelectronic fields. The actual melanin manufacturing process is not environmentally friendly as it is based on extraction and purification from cuttlefish. Synthetic melanin is available on the market, but it is more expensive than animal-sourced pigment and it requires long chemical procedures. The biotechnological production of microbial melanin, instead, might be a valid alternative. Streptomycetes synthesize melanins as pigments and as extracellular products. In this review, the melanin biotechnological production processes by different Streptomyces strains have been revised according to papers in the literature. The different fermentation strategies to increase melanin production such as the optimization of growth conditions and medium composition or the use of raw sources as growth substrates are here described. Diverse downstream purification processes are also reported as well as all the different analytical methods used to characterize the melanin produced by Streptomyces strains before its application in different fields.
Journal Article
Metal Ion Supplementation to Boost Melanin Production by Streptomyces nashvillensis
by
Restaino, Odile Francesca
,
Raganati, Francesca
,
Mariniello, Loredana
in
Biomass
,
Copper
,
Copper Sulfate - pharmacology
2025
As Streptomycetes might produce melanin to survive in stressful environmental conditions, like under metal exposure, supplementing metal ions to the growth medium could be a wise strategy for boosting the production of the pigment. The aim of this study was to test, for the first time, the possibility of boosting S. nashvillensis DSM40314 melanin biosynthesis by adding to the growth medium singularly or, at the same time, different concentrations (1.0, 1.5, and 2.0 g∙L−1) of CuSO4 or/and Fe2(SO4)3. A maximum melanin production of 4.0 ± 0.1 g·L−1 was obtained in shake flasks with a 2.0 g∙L−1 coupled addition of the two metals, while the extracellular tyrosinase activities ranged values between 5.4 and 11.6 ± 0.1 U·L−1. The pigments produced in different conditions were precipitated from the broth supernatants under acidic conditions, purified, and characterized by UV-VIS, FT-IR, and NMR analyses that determined structures like eumelanin pigments. Fermentation experiments in stirred tank reactors allowed to scale up the process in more controlled conditions, further boosting the pigment production up to 4.9 ± 0.1 g·L−1, with an increase of about 22.0% compared to the results obtained in shake flasks.
Journal Article