Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "Reubinoff, Benjamin"
Sort by:
Advances in hPSC expansion towards therapeutic entities: A review
For use in regenerative medicine, large‐scale manufacturing of human pluripotent stem cells (hPSCs) under current good manufacturing practice (cGMPs) is required. Much progress has been made since culturing under static two‐dimensional (2D) conditions on feeders, including feeder‐free cultures, conditioned and xeno‐free media, and three‐dimensional (3D) dynamic suspension expansion. With the advent of horizontal‐blade and vertical‐wheel bioreactors, scale‐out for large‐scale production of differentiated hPSCs became possible; control of aggregate size, shear stress, fluid hydrodynamics, batch‐feeding strategies, and other process parameters became a reality. Moving from substantially manipulated processes (i.e., 2D) to more automated ones allows easer compliance to current good manufacturing practices (cGMPs), and thus easier regulatory approval. Here, we review the current advances in the field of hPSC culturing, advantages, and challenges in bioreactor use, and regulatory areas of concern with respect to these advances. Manufacturing trends to reduce risk and streamline large‐scale manufacturing will bring about easier, faster regulatory approval for clinical applications. Dynamic suspension culture systems in the form of bioreactors, unlike static ones, can overcome unfavourable environmental culture conditions, assisting hPSCs to remain pluripotent and undifferentiated, or promoting their differentiation and expansion to desired cell types. They reduce medium consumption and workload, have high scalability, and allow easy online sampling for quality control analysis or other needed testing. Depending on the type of bioreactor chosen, their use permit robust expansion of large‐scale hPSCs with high‐quality, relatively homogeneous cultures, and controlled production to meet manufacturing needs for clinical trials. Closed, single‐use, well‐monitored, minimally manipulated systems will easier meet regulatory standards in bringing hPSC therapies to the clinics.
Standardization of the Teratoma Assay for Analysis of Pluripotency of Human ES Cells and Biosafety of Their Differentiated Progeny
Teratoma tumor formation is an essential criterion in determining the pluripotency of human pluripotent stem cells. However, currently there is no consistent protocol for assessment of teratoma forming ability. Here we present detailed characterization of a teratoma assay that is based on subcutaneous co-transplantation of defined numbers of undifferentiated human embryonic stem cells (hESCs) with mitotically inactivated feeder cells and Matrigel into immunodeficient mice. The assay was highly reproducible and 100% efficient when 100,000 hESCs were transplanted. It was sensitive, promoting teratoma formation after transplantation of 100 hESCs, though larger numbers of animals and longer follow-up were required. The assay could detect residual teratoma forming cells within differentiated hESC populations however its sensitivity was decreased in the presence of differentiated cells. Our data lay the foundation, for standardization of a teratoma assay for pluripotency analysis. The assay can also be used for bio-safety analysis of pluripotent stem cell-derived differentiated progeny.
Characterization of C9orf72 haplotypes to evaluate the effects of normal and pathological variations on its expression and splicing
Expansion of the hexanucleotide repeat (HR) in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in Caucasians. All C9orf72 -ALS/FTD patients share a common risk (R) haplotype. To study C9orf72 expression and splicing from the mutant R allele compared to the complementary normal allele in ALS/FTD patients, we initially created a detailed molecular map of the single nucleotide polymorphism (SNP) signature and the HR length of the various C9orf72 haplotypes in Caucasians. We leveraged this map to determine the allelic origin of transcripts per patient, and decipher the effects of pathological and normal HR lengths on C9orf72 expression and splicing. In C9orf72 ALS patients’ cells, the HR expanded allele, compared to non-R allele, was associated with decreased levels of a downstream initiated transcript variant and increased levels of transcripts initiated upstream of the HR. HR expanded R alleles correlated with high levels of unspliced intron 1 and activation of cryptic donor splice sites along intron 1. Retention of intron 1 was associated with sequential intron 2 retention. The SNP signature of C9orf72 haplotypes described here enables allele-specific analysis of transcriptional products and may pave the way to allele-specific therapeutic strategies.
Comprehensive Gene and microRNA Expression Profiling Reveals a Role for microRNAs in Human Liver Development
microRNAs (miRNAs) are small noncoding RNAs that regulate cognate mRNAs post-transcriptionally. miRNAs have been implicated in regulating gene expression in embryonic developmental processes, including proliferation and differentiation. The liver is a multifunctional organ, which undergoes rapid changes during the developmental period and relies on tightly-regulated gene expression. Little is known regarding the complex expression patterns of both mRNAs and miRNAs during the early stages of human liver development, and the role of miRNAs in the regulation of this process has not been studied. The aim of this work was to study the impact of miRNAs on gene expression during early human liver development. Global gene and miRNA expression were profiled in adult and in 9-12w human embryonic livers, using high-density microarrays and quantitative RT-PCR. Embryonic liver samples exhibited a gene expression profile that differentiated upon progression in the developmental process, and revealed multiple regulated genes. miRNA expression profiling revealed four major expression patterns that correlated with the known function of regulated miRNAs. Comparison of the expression of the most regulated miRNAs to that of their putative targets using a novel algorithm revealed a significant anti-correlation for several miRNAs, and identified the most active miRNAs in embryonic and in adult liver. Furthermore, our algorithm facilitated the identification of TGFbeta-R1 as a novel target gene of let-7. Our results uncover multiple regulated miRNAs and genes throughout human liver development, and our algorithm assists in identification of novel miRNA targets with potential roles in liver development.
Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer
Many genes associated with CpG islands undergo de novo methylation in cancer. Studies have suggested that the pattern of this modification may be partially determined by an instructive mechanism that recognizes specifically marked regions of the genome 1 . Using chromatin immunoprecipitation analysis, here we show that genes methylated in cancer cells are specifically packaged with nucleosomes containing histone H3 trimethylated on Lys27. This chromatin mark is established on these unmethylated CpG island genes early in development and then maintained in differentiated cell types by the presence of an EZH2-containing Polycomb complex 2 , 3 . In cancer cells 4 , as opposed to normal cells, the presence of this complex brings about the recruitment of DNA methyl transferases, leading to de novo methylation. These results suggest that tumor-specific targeting of de novo methylation is pre-programmed by an established epigenetic system that normally has a role in marking embryonic genes for repression 2 .
Derivation of Xeno-Free and GMP-Grade Human Embryonic Stem Cells – Platforms for Future Clinical Applications
Clinically compliant human embryonic stem cells (hESCs) should be developed in adherence to ethical standards, without risk of contamination by adventitious agents. Here we developed for the first time animal-component free and good manufacturing practice (GMP)-compliant hESCs. After vendor and raw material qualification, we derived xeno-free, GMP-grade feeders from umbilical cord tissue, and utilized them within a novel, xeno-free hESC culture system. We derived and characterized three hESC lines in adherence to regulations for embryo procurement, and good tissue, manufacturing and laboratory practices. To minimize freezing and thawing, we continuously expanded the lines from initial outgrowths and samples were cryopreserved as early stocks and banks. Batch release criteria included DNA-fingerprinting and HLA-typing for identity, characterization of pluripotency-associated marker expression, proliferation, karyotyping and differentiation in-vitro and in-vivo. These hESCs may be valuable for regenerative therapy. The ethical, scientific and regulatory methodology presented here may serve for development of additional clinical-grade hESCs.
MicroRNA Expression Patterns and Function in Endodermal Differentiation of Human Embryonic Stem Cells
microRNAs (miRNAs) are small noncoding RNAs that regulate cognate mRNAs post-transcriptionally. Human embryonic stem cells (hESC), which exhibit the characteristics of pluripotency and self-renewal, may serve as a model to study the role of miRNAs in early human development. We aimed to determine whether endodermally-differentiated hESC demonstrate a unique miRNA expression pattern, and whether overexpression of endoderm-specific miRNA may affect hESC differentiation. miRNA expression was profiled in undifferentiated and NaButyrate-induced differentiated hESC of two lines, using microarray and quantitative RT-PCR. Then, the effect of lentiviral-based overexpression of liver-specific miR-122 on hESC differentiation was analyzed, using genomewide gene microarrays. The miRNA profiling revealed expression of three novel miRNAs in undifferentiated and differentiated hESC. Upon NaButyrate induction, two of the most upregulated miRNAs common to both cell lines were miR-24 and miR-10a, whose target genes have been shown to inhibit endodermal differentiation. Furthermore, induction of several liver-enriched miRNAs, including miR-122 and miR-192, was observed in parallel to induction of endodermal gene expression. Stable overexpression of miR-122 in hESC was unable to direct spontaneous differentiation towards a clear endodermal fate, but rather, delayed general differentiation of these cells. Our results demonstrate that expression of specific miRNAs correlates with that of specific genes upon differentiation, and highlight the potential role of miRNAs in endodermal differentiation of hESC.
Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro
We describe the derivation of pluripotent embryonic stem (ES) cells from human blastocysts. Two diploid ES cell lines have been cultivated in vitro for extended periods while maintaining expression of markers characteristic of pluripotent primate cells. Human ES cells express the transcription factor Oct-4, essential for development of pluripotential cells in the mouse. When grafted into SCID mice, both lines give rise to teratomas containing derivatives of all three embryonic germ layers. Both cell lines differentiate in vitro into extraembryonic and somatic cell lineages. Neural progenitor cells may be isolated from differentiating ES cell cultures and induced to form mature neurons. Embryonic stem cells provide a model to study early human embryology, an investigational tool for discovery of novel growth factors and medicines, and a potential source of cells for use in transplantation therapy.
Neuroprotective Effect of Transplanted Human Embryonic Stem Cell-Derived Neural Precursors in an Animal Model of Multiple Sclerosis
Multiple sclerosis (MS) is an immune mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination and suppress the inflammatory process. We transplanted human embryonic stem cells (hESC)-derived early multipotent neural precursors (NPs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted NPs on the functional and pathological manifestations of the disease. Transplanted hESC-derived NPs significantly reduced the clinical signs of EAE. Histological examination showed migration of the transplanted NPs to the host white matter, however, differentiation to mature oligodendrocytes and remyelination were negligible. Time course analysis of the evolution and progression of CNS inflammation and tissue injury showed an attenuation of the inflammatory process in transplanted animals, which was correlated with the reduction of both axonal damage and demyelination. Co-culture experiments showed that hESC-derived NPs inhibited the activation and proliferation of lymph node-derived T cells in response to nonspecific polyclonal stimuli. The therapeutic effect of transplantation was not related to graft or host remyelination but was mediated by an immunosuppressive neuroprotective mechanism. The attenuation of EAE by hESC-derived NPs, demonstrated here, may serve as the first step towards further developments of hESC for cell therapy in MS.
Genome‐wide screen for anticancer drug resistance in haploid human embryonic stem cells
Anticancer drugs are at the frontline of cancer therapy. However, innate resistance to these drugs occurs in one‐third to one‐half of patients, exposing them to the side effects of these drugs with no meaningful benefit. To identify the genes and pathways that confer resistance to such therapies, we performed a genome‐wide screen in haploid human embryonic stem cells (hESCs). These cells possess the advantage of having only one copy of each gene, harbour a normal karyotype, and lack any underlying point mutations. We initially show a close correlation between the potency of anticancer drugs in cancer cell lines to those in hESCs. We then exposed a genome‐wide loss‐of‐function library of mutations in all protein‐coding genes to 10 selected anticancer drugs, which represent five different mechanisms of drug therapies. The genetic screening enabled us to identify genes and pathways which can confer resistance to these drugs, demonstrating several common pathways. We validated a few of the resistance‐conferring genes, demonstrating a significant shift in the effective drug concentrations to indicate a drug‐specific effect to these genes. Strikingly, the p53 signalling pathway seems to induce resistance to a large array of anticancer drugs. The data shows dramatic effects of loss of p53 on resistance to many but not all drugs, calling for clinical evaluation of mutations in this gene prior to anticancer therapy. Genome‐wide mutation library screens were performed to identify anticancer drug‐resistance genes through exposure of haploid human embryonic stem cells to anticancer drugs, identifying and subsequently validating enriched genes as conferring drug resistance.