Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
7,587 result(s) for "Reynolds, L. L."
Sort by:
Understanding, compliance and psychological impact of the SARS quarantine experience
This study examines a cohort of persons quarantined during the 2003 SARS outbreak in Canada and describes their understanding of, difficulties and compliance with, and the psychological impact of the quarantine experience. A mailed questionnaire was administered to 1912 eligible adults and included the Impact of Events Scale – Revised (IES-R) to assess symptoms of post-traumatic stress disorder (PTSD). Self-reported compliance with all required quarantine measures was low (15·8±2·3%), although significantly higher when the rationale for quarantine was understood (P=0·018). Health-care workers (HCW) experienced greater psychological distress, including symptoms of PTSD (P<0·001). Increasing perceived difficulty with compliance, HCW, longer quarantine and compliance with quarantine requirements were significant contributors to higher IES-R scores. The low compliance with quarantine requirements introduces concerns about the effectiveness of quarantine as a public health measure. Improvements in compliance and reduced psychological distress may be possible by minimizing duration, revising requirements, and providing enhanced education and support.
Wombs with a view : illustrations of the gravid uterus from the Renaissance through the nineteenth century
This volume provides an archive of some of the most beautiful illustrations ever made of the gravid uterus with fetus and placenta, which will serve future generations of investigators, educators and students of reproduction. The approximately two hundred figures from over one hundred volumes included are from the late fifteenth through the nineteenth century.
Quantifying global soil carbon losses in response to warming
A compilation of global soil carbon data from field experiments provides empirical evidence that warming-induced net losses of soil carbon could accelerate climate change. Planetary warming and soil carbon loss Warming can enhance the exchange of carbon between the soil and the atmosphere, but there is no consensus on the direction or magnitude of warming-induced changes in soil carbon. This paper presents a comprehensive analysis of warming-induced changes in soil carbon stocks based on data from field experiments across North America, Europe and Asia. The authors find that the effects of warming are contingent upon the size of the initial soil carbon stock, with considerable carbon losses occurring in high-latitude areas. Extrapolation of their findings to the global scale provides support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon–climate feedback that could accelerate climate change. The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming 1 , 2 , 3 , 4 . Despite evidence that warming enhances carbon fluxes to and from the soil 5 , 6 , the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12–17 per cent of the expected anthropogenic emissions over this period 7 , 8 . Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon–climate feedback that could accelerate climate change.
The role of silicon in plant biology: a paradigm shift in research approach
Silicon (Si) is known to have numerous beneficial effects on plants, alleviating diverse forms of abiotic and biotic stress. Research on this topic has accelerated in recent years and revealed multiple effects of Si in a range of plant species. Available information regarding the impact of Si on plant defence, growth and development is fragmented, discipline-specific, and usually focused on downstream, distal phenomena rather than underlying effects. Accordingly, there is a growing need for studies that address fundamental metabolic and regulatory processes, thereby allowing greater unification and focus of current research across disciplines. Silicon is often regarded as a plant nutritional 'non-entity'. A suite of factors associated with Si have been recently identified, relating to plant chemistry, physiology, gene regulation and interactions with other organisms. Research to date has typically focused on the impact of Si application upon plant stress responses. However, the fundamental, underlying mechanisms that account for the manifold effects of Si in plant biology remain undefined. Here, the known effects of Si in higher plants relating to alleviation of both abiotic and biotic stress are briefly reviewed and the potential importance of Si in plant primary metabolism is discussed, highlighting the need for a unifying research framework targeting common underlying mechanisms. The traditional approach of discipline-specific work on single stressors in individual plant species is currently inadequate. Thus, a holistic and comparative approach is proposed to assess the mode of action of Si between plant trait types (e.g. C3, C4 and CAM; Si accumulators and non-accumulators) and between biotic and abiotic stressors (pathogens, herbivores, drought, salt), considering potential pathways (i.e. primary metabolic processes) highlighted by recent empirical evidence. Utilizing genomic, transcriptomic, proteomic and metabolomic approaches in such comparative studies will pave the way for unification of the field and a deeper understanding of the role of Si in plants.