Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
51
result(s) for
"Rhimi, Moez"
Sort by:
Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity
2020
Obesity is associated with low-grade chronic inflammation promoting insulin-resistance and diabetes. Gut microbiota dysbiosis is a consequence as well as a driver of obesity and diabetes. Mucosal-associated invariant T cells (MAIT) are innate-like T cells expressing a semi-invariant T cell receptor restricted to the non-classical MHC class I molecule MR1 presenting bacterial ligands. Here we show that during obesity MAIT cells promote inflammation in both adipose tissue and ileum, leading to insulin resistance and impaired glucose and lipid metabolism. MAIT cells act in adipose tissue by inducing M1 macrophage polarization in an MR1-dependent manner and in the gut by inducing microbiota dysbiosis and loss of gut integrity. Both MAIT cell-induced tissue alterations contribute to metabolic dysfunction. Treatment with MAIT cell inhibitory ligand demonstrates its potential as a strategy against inflammation, dysbiosis and metabolic disorders.
Inflammation, immune cells and the host microbiota are intimately linked in the pathophysiology of obesity and diabetes. Here the authors show mucosal-associated invariant T cells fuel inflammation in the tissues and serve a function in promoting metabolic breakdown, polarising macrophage populations and inducing dysbiosis of the intestinal microbiota.
Journal Article
The intestinal microbiota regulates host cholesterol homeostasis
2019
Background
Management of blood cholesterol is a major focus of efforts to prevent cardiovascular diseases. The objective of this study was to investigate how the gut microbiota affects host cholesterol homeostasis at the organism scale.
Results
We depleted the intestinal microbiota of hypercholesterolemic female
Apoe
−/−
mice using broad-spectrum antibiotics. Measurement of plasma cholesterol levels as well as cholesterol synthesis and fluxes by complementary approaches showed that the intestinal microbiota strongly regulates plasma cholesterol level, hepatic cholesterol synthesis, and enterohepatic circulation. Moreover, transplant of the microbiota from humans harboring elevated plasma cholesterol levels to recipient mice induced a phenotype of high plasma cholesterol levels in association with a low hepatic cholesterol synthesis and high intestinal absorption pattern. Recipient mice phenotypes correlated with several specific bacterial phylotypes affiliated to
Betaproteobacteria
,
Alistipes
,
Bacteroides
, and
Barnesiella
taxa.
Conclusions
These results indicate that the intestinal microbiota determines the circulating cholesterol level and may thus represent a novel therapeutic target in the management of dyslipidemia and cardiovascular diseases.
Journal Article
Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats
2018
Gut microbiota produces a wide and diverse array of metabolites that are an integral part of the host metabolome. The emergence of the gut microbiome-brain axis concept has prompted investigations on the role of gut microbiota dysbioses in the pathophysiology of brain diseases. Specifically, the search for microbe-related metabolomic signatures in human patients and animal models of psychiatric disorders has pointed out the importance of the microbial metabolism of aromatic amino acids. Here, we investigated the effect of indole on brain and behavior in rats. Indole is produced by gut microbiota from tryptophan, through the tryptophanase enzyme encoded by the
A gene. First, we mimicked an acute and high overproduction of indole by injecting this compound in the cecum of conventional rats. This treatment led to a dramatic decrease of motor activity. The neurodepressant oxidized derivatives of indole, oxindole and isatin, accumulated in the brain. In addition, increase in eye blinking frequency and in c-Fos protein expression in the dorsal vagal complex denoted a vagus nerve activation. Second, we mimicked a chronic and moderate overproduction of indole by colonizing germ-free rats with the indole-producing bacterial species
. We compared emotional behaviors of these rats with those of germ-free rats colonized with a genetically-engineered counterpart strain unable to produce indole. Rats overproducing indole displayed higher helplessness in the tail suspension test, and enhanced anxiety-like behavior in the novelty, elevated plus maze and open-field tests. Vagus nerve activation was suggested by an increase in eye blinking frequency. However, unlike the conventional rats dosed with a high amount of indole, the motor activity was not altered and neither oxindole nor isatin could be detected in the brain. Further studies are required for a comprehensive understanding of the mechanisms supporting indole effects on emotional behaviors. As our findings suggest that people whose gut microbiota is highly prone to produce indole could be more likely to develop anxiety and mood disorders, we addressed the issue of the inter-individual variability of indole producing potential in humans. An
investigation of metagenomic data focused on the
A gene products definitively proved this inter-individual variability.
Journal Article
Long-term high-fructose high-fat diet feeding elicits insulin resistance, exacerbates dyslipidemia and induces gut microbiota dysbiosis in WHHL rabbits
2022
The metabolic syndrome (MetS) has become a global public health burden due to its link to cardiovascular disease and diabetes mellitus. The present study was designed to characterize the metabolic and cardiovascular disturbances, as well as changes in gut microbiota associated with high-fructose high-fat diet (HFFD)-induced MetS in Watanabe heritable hyperlipidemic (WHHL) rabbits. Twenty-one Watanabe rabbits were assigned to a control (n = 9) and HFFD (n = 12) groups, receiving a chow diet and a HFFD, respectively. During a 12-weeks protocol, morphological parameters were monitored; plasma fasting levels of lipids, glucose and insulin were measured and a glucose tolerance test (GTT) was performed. HOMA-IR was calculated. Cardiac function and vascular reactivity were evaluated using the Langendorff isolated heart and isolated carotid arteries methods, respectively. 16S rRNA sequencing of stool samples was used to determine gut microbial composition and abundance. HFFD-fed Watanabe rabbits exhibited increased fasting insulin (
p
< 0.03, 12
th
week vs. Baseline), HOMA-IR (
p
< 0.03 vs. Control), area under the curve of the GTT (
p
< 0.02 vs. Control), triglycerides (
p
< 0.05, 12
th
week vs. Baseline), TC (
p
< 0.01 vs. Control), LDL-C (
p
< 0.001 vs. Control). The HFFD group also displayed a significant decrease in intestinal microbial richness, evenness and diversity (
FDR
< 0.001,
FDR
< 0.0001,
FDR
< 0.01, respectively vs. Control group) and an increase in its
Firmicutes
/
Bacteroidetes
ratio (R = 3.39 in control vs. R = 28.24 in the HFFD group) indicating a shift in intestinal microbial composition and diversity. Our results suggest that HFFD induces insulin resistance and gut microbiota dysbiosis and accentuates dyslipidemia; and that, when subjected to HFFD, Watanabe rabbits might become a potential diet-induced MetS animal models with two main features, dyslipidemia and insulin resistance.
Journal Article
Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health
2021
The gut microbiota has been increasingly linked to metabolic health and disease over the last few decades. Several factors have been suggested to be involved in lipid metabolism and metabolic responses. One mediator that has gained great interest as a clinically important enzyme is bile salt hydrolase (BSH). BSH enzymes are widely distributed in human gastrointestinal microbial communities and are believed to play key roles in both microbial and host physiology. In this review, we discuss the current evidence related to the role of BSHs in health and provide useful insights that may pave the way for new therapeutic targets in human diseases.
Journal Article
Structural and Functional Characterization of Drosophila melanogaster α-Amylase
by
Feller, Georges
,
Rhimi, Moez
,
Da Lage, Jean-Luc
in
acarbose
,
Amino acids
,
Biochemistry, biophysics & molecular biology
2023
Insects rely on carbohydrates such as starch and glycogen as an energy supply for growth of larvae and for longevity. In this sense α-amylases have essential roles under extreme conditions, e.g., during nutritional or temperature stress, thereby contributing to survival of the insect. This makes them interesting targets for combating insect pests. Drosophila melanogaster α-amylase, DMA, which belongs to the glycoside hydrolase family 13, sub family 15, has been studied from an evolutionary, biochemical, and structural point of view. Our studies revealed that the DMA enzyme is active over a broad temperature and pH range, which is in agreement with the fluctuating environmental changes with which the insect is confronted. Crystal structures disclosed a new nearly fully solvated metal ion, only coordinated to the protein via Gln263. This residue is only conserved in the subgroup of D. melanogaster and may thus contribute to the enzyme adaptive response to large temperature variations. Studies of the effect of plant inhibitors and the pseudo-tetrasaccharide inhibitor acarbose on DMA activity, allowed us to underline the important role of the so-called flexible loop on activity/inhibition, but also to suggest that the inhibition modes of the wheat inhibitors WI-1 and WI-3 on DMA, are likely different.
Journal Article
Fecal Serine Protease Profiling in Inflammatory Bowel Diseases
by
Mkaouar, Héla
,
Gargouri, Ali
,
Soussou, Souha
in
Cathepsin G
,
Cellular and Infection Microbiology
,
Elastase
2020
Serine proteases are extensively known to play key roles in many physiological processes. However, their dysregulation is often associated to several diseases including inflammatory bowel diseases (IBD). Here, we used specific substrates to monitor fecal protease activities in a large cohort of healthy and IBD patients. Of interest, serine protease activity was 10-fold higher in IBD fecal samples compared to healthy controls. Moreover, functional analysis of these fecal proteolytic activities revealed that the most increased activities are trypsin-like, elastase-like and cathepsin G-like. We also show for the first time, an increase of proteinase 3-like activity in these samples compared to controls. Results presented here will guide further investigations to better understand the relevance of these peptidases in IBD.
Journal Article
Serine proteases and metalloproteases are highly increased in irritable bowel syndrome Tunisian patients
by
Boudaya, Houda
,
Gargouri, Ali
,
Soussou, Souha
in
631/45/607/468
,
692/4020/1503/1581/2071
,
Cathepsin G
2023
Serine proteases are involved in many biological processes and are associated with irritable bowel syndrome (IBS) pathology. An increase in serine protease activity has been widely reported in IBS patients. While most of the studies focused on host proteases, the contribution of microbial proteases are poorly studied. In the present study, we report the analysis of proteolytic activities in fecal samples from the first Tunisian cohort of IBS-M patients and healthy individuals. We demonstrated, for the first time, that metalloproteases activities were fourfold higher in fecal samples of IBS patients compared to controls. Of interest, the functional characterization of serine protease activities revealed a 50-fold increase in trypsin-like activities and a threefold in both elastase- and cathepsin G-like activities. Remarkably, we also showed a fourfold increase in proteinase 3-like activity in the case of IBS. This study also provides insight into the alteration of gut microbiota and its potential role in proteolytic modulation in IBS. Our results stressed the impact of the disequilibrium of serine proteases, metalloproteases and gut microbiota in IBS and the need of the further characterization of these targets to set out new therapeutic approaches.
Journal Article
The Nexus of Diet, Gut Microbiota and Inflammatory Bowel Diseases in Dogs
by
Saidi, Amel
,
Jablaoui, Amin
,
Akermi, Nizar
in
Biochemistry, Molecular Biology
,
canine inflammatory bowel disease (IBD)
,
Care and treatment
2022
Canine inflammatory bowel diseases (IBD) are of increasing interest in veterinary medicine. They refer to complex and debilitating conditions of dogs’ gastrointestinal tract. Although little evidence for causal inferences is currently available, it is believed that IBD pathophysiology entails intricate interactions between environmental factors, the intestinal immune system, and the microbial communities that colonize the gut. To better understand the mechanisms underlying these disorders, leveraging factors associated with the development of these diseases is imperative. Of these factors, emerging evidence supports the role of dietary patterns as key players influencing the composition and function of gut microbes, with subsequent effects on health and disease. In this review, we particularly focus on addressing IBD in dogs and discuss how specific nutrients may elicit or relieve gut inflammation. Gaining mechanistic insights into such interplay and the underpinning mechanisms is key to inferring dietary recommendations, and setting up new and promising therapeutics.
Journal Article
Bile Acids: Key Players in Inflammatory Bowel Diseases?
2022
Inflammatory bowel diseases (IBDs) have emerged as a public health problem worldwide with a limited number of efficient therapeutic options despite advances in medical therapy. Although changes in the gut microbiota composition are recognized as key drivers of dysregulated intestinal immunity, alterations in bile acids (BAs) have been shown to influence gut homeostasis and contribute to the pathogenesis of the disease. In this review, we explore the interactions involving BAs and gut microbiota in IBDs, and discuss how the gut microbiota–BA–host axis may influence digestive inflammation.
Journal Article