Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
50 result(s) for "Rial, Eduardo"
Sort by:
The landscape of mitochondrial small non-coding RNAs in the PGCs of male mice, spermatogonia, gametes and in zygotes
Background Mitochondria are organelles that fulfill a fundamental role in cell bioenergetics, as well as in other processes like cell signaling and death. Small non-coding RNAs (sncRNA) are now being considered as pivotal post-transcriptional regulators, widening the landscape of their diversity and functions. In mammalian cells, small RNAs encoded by the mitochondrial genome, mitosRNAs were discovered recently, although their biological role remains uncertain. Results Here, using specific bioinformatics analyses, we have defined the diversity of mitosRNAs present in early differentiated germ cells of male mice (PGCs and spermatogonia), and in the gametes of both sexes and in zygotes. We found strong transcription of mitosRNAs relative to the size of the mtDNA, and classifying these mitosRNAs into different functional sncRNA groups highlighted the predominance of Piwi-interacting RNAs (piRNAs) relative to the other types of mitosRNAs. Mito-piRNAs were more abundant in oocytes and zygotes, where mitochondria fulfill key roles in fecundation process. Functional analysis of some particular mito-piRNAs (mito-piR-7,456,245), also expressed in 3T3-L1 cells, was assessed after exposure to RNA antagonists. Conclusions As far as we are aware, this is the first integrated analysis of sncRNAs encoded by mtDNA in germ cells and zygotes. The data obtained suggesting that mitosRNAs fulfill key roles in gamete differentiation and fertilization.
Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale. Spin-crossover molecules can change their spin-state under a variety of stimuli making them ideal sensors; however, they are typically insulating and unstable. Here, Villalva et al overcome these limitations by encapsulating spin-crossover molecules inside a carbon nanotube.
Automating Synthetic Organic Electrochemistry: Concepts and Advancements
Automated electrochemical platforms are attracting attention for their potential in streamlining reaction preparation, electrolysis, and analysis to generate large datasets in a fast and efficient manner. Moreover, the recent implementation of on‐line analytics together with closed‐loop workflows has enabled the emergence of electrochemical self‐driving laboratories. In this review, the common guidelines for the development of these platforms are presented, covering the main modules to assemble these systems. Furthermore, a comprehensive survey of all the platforms applied in synthetic organic electrochemistry is reported, where each example is described in terms of elements and applications and classified by category. Finally, an outlook including a perspective on the topic is presented, proposing potential future directions of the field. A tutorial review on how to build an automated electrochemical flow platform, including the most relevant progresses and the future directions of the field, is studied.
Capacitation promotes a shift in energy metabolism in murine sperm
In mammals, sperm acquire fertilization ability after a series of physiological and biochemical changes, collectively known as capacitation, that occur inside the female reproductive tract. In addition to other requirements, sperm bioenergetic metabolism has been identified as a fundamental component in the acquisition of capacitation. Mammalian sperm produce ATP through two main metabolic processes, oxidative phosphorylation (OXPHOS) and aerobic glycolysis that are localized to two different flagellar compartments, the midpiece, and the principal piece, respectively. In mouse sperm, the occurrence of many events associated with capacitation relies on the activity of these two energy-producing pathways, leading to the hypothesis that some of these events may impose changes in sperm energetic demands. In the present study, we used extracellular flux analysis to evaluate changes in glycolytic and respiratory parameters of murine sperm that occur as a consequence of capacitation. Furthermore, we examined whether these variations affect sperm ATP sustainability. Our results show that capacitation promotes a shift in the usage ratio of the two main metabolic pathways, from oxidative to glycolytic. However, this metabolic rewiring does not seem to affect the rate at which the sperm consume ATP. We conclude that the probable function of the metabolic switch is to increase the ATP supply in the distal flagellar regions, thus sustaining the energetic demands that arise from capacitation.
Leishmania infantum Modulates Host Macrophage Mitochondrial Metabolism by Hijacking the SIRT1-AMPK Axis
Metabolic manipulation of host cells by intracellular pathogens is currently recognized to play an important role in the pathology of infection. Nevertheless, little information is available regarding mitochondrial energy metabolism in Leishmania infected macrophages. Here, we demonstrate that during L. infantum infection, macrophages switch from an early glycolytic metabolism to an oxidative phosphorylation, and this metabolic deviation requires SIRT1 and LKB1/AMPK. SIRT1 or LBK1 deficient macrophages infected with L. infantum failed to activate AMPK and up-regulate its targets such as Slc2a4 and Ppargc1a, which are essential for parasite growth. As a result, impairment of metabolic switch caused by SIRT1 or AMPK deficiency reduces parasite load in vitro and in vivo. Overall, our work demonstrates the importance of SIRT1 and AMPK energetic sensors for parasite intracellular survival and proliferation, highlighting the modulation of these proteins as potential therapeutic targets for the treatment of leishmaniasis.
The antiandrogenic vinclozolin induces differentiation delay of germ cells and changes in energy metabolism in 3D cultures of fetal ovaries
Vinclozolin is a pesticide with antiandrogenic activity as an endocrine disruptor compound. Its effects upon the progression of primordial follicles were assessed in cultures of mouse fetal ovaries from the onset of meiotic differentiation of germ cells (13.5 days post coitum) and from both in vivo exposed mice and in vitro exposed ovaries. Exposure of ovaries to vinclozolin—at in vitro dosages ranging from 10 to 200 μM and in 3D ex vivo culture following in vivo exposure to 50 mg/kg bw/day—showed delays in meiocyte differentiation and in follicle growth, even at the lowest in vitro dose exposure. Immunofluorescent analysis showed the presence of the proteins MSY2 and NOBOX in the primary follicles but no difference in the level of protein signals or in the number of follicles in relation to treatment. However, assessing the cytological differentiation of germ cells by detecting the synaptonemal complex protein SYCP3, the exposure to vinclozolin delayed meiotic differentiation from both in vitro- and in vivo-exposed ovaries. These effects were concomitant with changes in the energy metabolism, detected as a relative increase of glycolytic metabolism in live-cell metabolic assays in exposed ovaries.
Apoptotic Efficacy of Etomoxir in Human Acute Myeloid Leukemia Cells. Cooperation with Arsenic Trioxide and Glycolytic Inhibitors, and Regulation by Oxidative Stress and Protein Kinase Activities
Fatty acid synthesis and oxidation are frequently exacerbated in leukemia cells, and may therefore represent a target for therapeutic intervention. In this work we analyzed the apoptotic and chemo-sensitizing action of the fatty acid oxidation inhibitor etomoxir in human acute myeloid leukemia cells. Etomoxir caused negligible lethality at concentrations up to 100 µM, but efficaciously cooperated to cause apoptosis with the anti-leukemic agent arsenic trioxide (ATO, Trisenox), and with lower efficacy with other anti-tumour drugs (etoposide, cisplatin), in HL60 cells. Etomoxir-ATO cooperation was also observed in NB4 human acute promyelocytic cells, but not in normal (non-tumour) mitogen-stimulated human peripheral blood lymphocytes. Biochemical determinations in HL60 cells indicated that etomoxir (25-200 µM) dose-dependently inhibited mitochondrial respiration while slightly stimulating glycolysis, and only caused marginal alterations in total ATP content and adenine nucleotide pool distribution. In addition, etomoxir caused oxidative stress (increase in intracellular reactive oxygen species accumulation, decrease in reduced glutathione content), as well as pro-apoptotic LKB-1/AMPK pathway activation, all of which may in part explain the chemo-sensitizing capacity of the drug. Etomoxir also cooperated with glycolytic inhibitors (2-deoxy-D-glucose, lonidamine) to induce apoptosis in HL60 cells, but not in NB4 cells. The combined etomoxir plus 2-deoxy-D-glucose treatment did not increase oxidative stress, caused moderate decrease in net ATP content, increased the AMP/ATP ratio with concomitant drop in energy charge, and caused defensive Akt and ERK kinase activation. Apoptosis generation by etomoxir plus 2-deoxy-D-glucose was further increased by co-incubation with ATO, which is apparently explained by the capacity of ATO to attenuate Akt and ERK activation. In summary, co-treatment with etomoxir may represent an interesting strategy to increase the apoptotic efficacy of ATO and (with some limitations) 2-deoxy-D-glucose which, although clinically important anti-tumour agents, exhibit low efficacy in monotherapy.
Inhibition of galectin-3 ameliorates the consequences of cardiac lipotoxicity in a rat model of diet-induced obesity
Obesity is accompanied by metabolic alterations characterized by insulin resistance and cardiac lipotoxicity. Galectin-3 (Gal-3) induces cardiac inflammation and fibrosis in the context of obesity; however, its role in the metabolic consequences of obesity is not totally established. We have investigated the potential role of Gal-3 in the cardiac metabolic disturbances associated with obesity. In addition, we have explored whether this participation is, at least partially, acting on mitochondrial damage. Gal-3 inhibition in rats that were fed a high-fat diet (HFD) for 6 weeks with modified citrus pectin (MCP; 100 mg/kg/day) attenuated the increase in cardiac levels of total triglyceride (TG). MCP treatment also prevented the increase in cardiac protein levels of carnitine palmitoyl transferase IA, mitofusin 1, and mitochondrial complexes I and II, reactive oxygen species accumulation and decrease in those of complex V but did not affect the reduction in 18F-fluorodeoxyglucose uptake observed in HFD rats. The exposure of cardiac myoblasts (H9c2) to palmitic acid increased the rate of respiration, mainly due to an increase in the proton leak, glycolysis, oxidative stress, β-oxidation and reduced mitochondrial membrane potential. Inhibition of Gal-3 activity was unable to affect these changes. Our findings indicate that Gal-3 inhibition attenuates some of the consequences of cardiac lipotoxicity induced by a HFD since it reduced TG and lysophosphatidyl choline (LPC) levels. These reductions were accompanied by amelioration of the mitochondrial damage observed in HFD rats, although no improvement was observed regarding insulin resistance. These findings increase the interest for Gal-3 as a potential new target for therapeutic intervention to prevent obesity-associated cardiac lipotoxicity and subsequent mitochondrial dysfunction.
Bioenergetic changes in response to sperm capacitation and two-way metabolic compensation in a new murine model
The acquisition of fertilizing ability by mammalian spermatozoa, known as “capacitation,” includes processes that depend on particular metabolic pathways. This has led to the hypothesis that ATP demands might differ between capacitated and non-capacitated cells. Mouse sperm can produce ATP via OXPHOS and aerobic glycolysis, an advantageous characteristic considering that these cells have to function in the complex and variable environment of the female reproductive tract. Nonetheless, despite evidence showing that both metabolic pathways play a role in events associated with mouse sperm capacitation, there is contradictory evidence regarding changes promoted by capacitation in this species. In addition, the vast majority of studies regarding murine sperm metabolism use Mus musculus laboratory strains as model, thus neglecting the wide diversity of sperm traits of other species of Mus. Focus on closely related species with distinct evolutionary histories, which may be the result of different selective pressures, could shed light on diversity of metabolic processes. Here, we analyzed variations in sperm bioenergetics associated with capacitation in spermatozoa of the steppe mouse, Mus spicilegus, a species with high sperm performance. Furthermore, we compared sperm metabolic traits of this species with similar traits previously characterized in M. musculus. We found that the metabolism of M. spicilegus sperm responded to capacitation in a manner similar to that of M. musculus sperm. However, M. spicilegus sperm showed distinct metabolic features, including the ability to perform cross-pathway metabolic compensation in response to either respiratory or glycolytic inhibition, thus revealing a delicate fine-tuning of its metabolic capacities.
UCP2 Deficiency Helps to Restrict the Pathogenesis of Experimental Cutaneous and Visceral Leishmaniosis in Mice
Uncoupling protein 2 (UCP2) is a mitochondrial transporter that has been shown to lower the production of reactive oxygen species (ROS). Intracellular pathogens such as Leishmania upregulate UCP2 and thereby suppress ROS production in infected host tissues, allowing the multiplication of parasites within murine phagocytes. This makes host UCP2 and ROS production potential targets in the development of antileishmanial therapies. Here we explore how UCP2 affects the outcome of cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL) in wild-type (WT) C57BL/6 mice and in C57BL/6 mice lacking the UCP2 gene (UCP2KO). To investigate the effects of host UCP2 deficiency on Leishmania infection, we evaluated parasite loads and cytokine production in target organs. Parasite loads were significantly lower in infected UCP2KO mice than in infected WT mice. We also found that UCP2KO mice produced significantly more interferon-γ (IFN-γ), IL-17 and IL-13 than WT mice (P<0.05), suggesting that UCP2KO mice are resistant to Leishmania infection. In this way, UCP2KO mice were better able than their WT counterparts to overcome L. major and L. infantum infections. These findings suggest that upregulating host ROS levels, perhaps by inhibiting UPC2, may be an effective approach to preventing leishmaniosis.