Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Richard D. Bunker"
Sort by:
Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN
Thalidomide and its analogs improve the survival of patients with multiple myeloma and other blood cancers. Previous work showed that the drugs bind to the E3 ubiquitin ligase Cereblon, which then targets for degradation two specific zinc finger (ZF) transcription factors with a role in cancer development. Sievers et al. found that more ZF proteins than anticipated are destabilized by thalidomide analogs. A proof-of-concept experiment revealed that chemical modifications of thalidomide can lead to selective degradation of specific ZF proteins. The detailed information provided by structural, biochemical, and computational analyses could guide the development of drugs that target ZF transcription factors implicated in human disease. Science , this issue p. eaat0572 A detailed analysis of zinc finger protein degradation by thalidomide may help efforts to “drug” transcription factors. The small molecules thalidomide, lenalidomide, and pomalidomide induce the ubiquitination and proteasomal degradation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) by recruiting a Cys 2 -His 2 (C2H2) zinc finger domain to Cereblon (CRBN), the substrate receptor of the CRL4 CRBN E3 ubiquitin ligase. We screened the human C2H2 zinc finger proteome for degradation in the presence of thalidomide analogs, identifying 11 zinc finger degrons. Structural and functional characterization of the C2H2 zinc finger degrons demonstrates how diverse zinc finger domains bind the permissive drug-CRBN interface. Computational zinc finger docking and biochemical analysis predict that more than 150 zinc fingers bind the drug-CRBN complex in vitro, and we show that selective zinc finger degradation can be achieved through compound modifications. Our results provide a rationale for therapeutically targeting transcription factors that were previously considered undruggable.
Crystal structure of the human COP9 signalosome
Ubiquitination is a crucial cellular signalling process, and is controlled on multiple levels. Cullin–RING E3 ubiquitin ligases (CRLs) are regulated by the eight-subunit COP9 signalosome (CSN). CSN inactivates CRLs by removing their covalently attached activator, NEDD8. NEDD8 cleavage by CSN is catalysed by CSN5, a Zn 2+ -dependent isopeptidase that is inactive in isolation. Here we present the crystal structure of the entire ∼350-kDa human CSN holoenzyme at 3.8 Å resolution, detailing the molecular architecture of the complex. CSN has two organizational centres: a horseshoe-shaped ring created by its six proteasome lid–CSN–initiation factor 3 (PCI) domain proteins, and a large bundle formed by the carboxy-terminal α-helices of every subunit. CSN5 and its dimerization partner, CSN6, are intricately embedded at the core of the helical bundle. In the substrate-free holoenzyme, CSN5 is autoinhibited, which precludes access to the active site. We find that neddylated CRL binding to CSN is sensed by CSN4, and communicated to CSN5 with the assistance of CSN6, resulting in activation of the deneddylase. The COP9 signalosome (CSN) complex regulates cullin–RING E3 ubiquitin ligases—the largest class of ubiquitin ligase enzymes, which are involved in a multitude of regulatory processes; here, the crystal structure of the entire human CSN holoenzyme is presented. Human COP9 signalosome structure The COP9 signalosome (CSN) is a large protein complex that functions in the ubiquitin–proteasome intracellular protein degradation pathway. First identified 20 years ago in developing Arabidopsis seedlings, it is now thought to be part of the regulatory machinery in all animals, plants and fungi. Here, Nicolas Thomä and co-workers present the crystal structure of the entire eight-subunit human COP9 signalosome at 3.8 Å resolution, providing insights into its molecular architecture and mechanism of action. The structure reveals how the complex achieves such exquisite specificity for its substrates.
Cullin–RING ubiquitin E3 ligase regulation by the COP9 signalosome
The cullin–RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A–RBX1–DDB1–DDB2 complex (CRL4A DDB2 ) monitors the genome for ultraviolet-light-induced DNA damage. CRL4A DBB2 is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4A DDB2 and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 Å resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN. Much of the intracellular protein degradation in eukaryotes is controlled by cullin–RING ubiquitin ligases (CRLs), a vast class of enzymes which are regulated by the COP9 signalosome (CSN); structural characterization of CSN–N8CRL4A complexes by cryo-electron microscopy reveals an induced-fit mechanism of CSN activation triggered only by catalytically activated CRLs without bound substrate, explaining how CSN acts as a global regulator of CRLs. Control of intracellular protein degradation Much of the intracellular protein degradation in eukaryotes is controlled by cullin–RING ubiquitin ligases (CRLs). The structure of these enzymes and their substrates vary greatly, yet all are regulated by a single complex — the COP9 signalosome (CSN). What enables CSN to be a master regulator of diverse CRLs? Nicolas Thomä and colleagues present biochemical data and cryo-electron microscopy of CSN–CRL4 complexes revealing an induced-fit mechanism that activates CSN only in the presence of a catalytically activated CRL not bound to a substrate. The authors identify both unique and less-specific CSN–CRL contacts.
A degron-mimicking molecular glue drives CRBN homo-dimerization and degradation
Cereblon (CRBN) is an E3 ubiquitin ligase widely harnessed for targeted protein degradation (TPD). We report the discovery of a molecular glue degrader (MGD), MRT-31619, that drives homo-dimerization of CRBN and promotes its fast, potent, and selective degradation by the ubiquitin proteasome system. Interestingly, the cryo-electron microscopy (cryo-EM) structure of the CRBN homodimer reveals a unique mechanism whereby two molecular glues assemble into a helix-like structure and drive ternary complex formation by mimicking a neosubstrate G-loop degron. This CRBN chemical knockout offers a valuable tool to elucidate the molecular mechanism of MGDs, to investigate its endogenous substrates and understand their physiological roles. A molecular glue induces CRBN homodimerization and degradation through degron mimicry, revealing a distinct glue mechanism and offering a tool to study CRBN biology.
Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser
To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses fromX-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm³ in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm³ in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.
functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography
Protein 3D structure can be a powerful predictor of function, but it often faces a critical roadblock at the crystallization step. Rv1738, a protein from Mycobacterium tuberculosis that is strongly implicated in the onset of nonreplicating persistence, and thereby latent tuberculosis, resisted extensive attempts at crystallization. Chemical synthesis of the l - and d -enantiomeric forms of Rv1738 enabled facile crystallization of the d / l -racemic mixture. The structure was solved by an ab initio approach that took advantage of the quantized phases characteristic of diffraction by centrosymmetric crystals. The structure, containing l - and d -dimers in a centrosymmetric space group, revealed unexpected homology with bacterial hibernation-promoting factors that bind to ribosomes and suppress translation. This suggests that the functional role of Rv1738 is to contribute to the shutdown of ribosomal protein synthesis during the onset of nonreplicating persistence of M. tuberculosis . Significance Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural l -form. Native chemical ligation was used to synthesize both l -protein and d -protein enantiomers of Rv1738. Crystallization of the racemic { d -protein + l -protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. We predict that Rv1738, which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.
The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K
Molecular glue compounds induce protein–protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation 1 . Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets 2 . They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines 3 – 5 , we identify CR8—a cyclin-dependent kinase (CDK) inhibitor 6 —as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12–cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues. The cyclin-dependent kinase inhibitor CR8 acts as a molecular glue compound by inducing the formation of a complex between CDK12–cyclin K and DDB1, which results in the ubiquitination and degradation of cyclin K.
Publisher Correction: DNA damage detection in nucleosomes involves DNA register shifting
In this Article, in Fig. 1a, the 5' and 3' labels were reversed in the DNA sequence, and Fig. 4 was missing panel labels a-e. These errors have been corrected online.In this Article, in Fig. 1a, the 5' and 3' labels were reversed in the DNA sequence, and Fig. 4 was missing panel labels a-e. These errors have been corrected online.
Machine learning to predict de novo protein–protein interactions
Machine learning, particularly deep learning, has revolutionized protein–protein interaction (PPI) prediction.Methods based on AlphaFold2 are excellent predictors of endogenous interactions with an evolutionary trace, but their performance drops on interactions with no precedence in nature (de novo).Novel algorithms have been developed to explicitly tackle de novo interactions, including those based on protein–protein co-folding, graph-based atomistic models, and methods that learn from the molecular surface.De novo PPI prediction opens broad applications in biotechnology ranging from drug discovery using molecular glues that rewire cellular function to protein engineering. Advances in machine learning for structural biology have dramatically enhanced our capacity to predict protein–protein interactions (PPIs). Here, we review recent developments in the computational prediction of PPIs, particularly focusing on innovations that enable interaction predictions that have no precedence in nature, termed de novo. We discuss novel machine learning algorithms for PPI prediction, including approaches based on co-folding and atomic graphs. We further highlight methods that learn from molecular surfaces, which can predict PPIs not found in nature including interactions induced by small molecules. Finally, we explore the emerging biotechnological applications enabled by these predictive capabilities, including the prediction of antibody–antigen complexes and molecular glue-induced PPIs, and discuss their potential to empower drug discovery and protein engineering. Advances in machine learning for structural biology have dramatically enhanced our capacity to predict protein–protein interactions (PPIs). Here, we review recent developments in the computational prediction of PPIs, particularly focusing on innovations that enable interaction predictions that have no precedence in nature, termed de novo. We discuss novel machine learning algorithms for PPI prediction, including approaches based on co-folding and atomic graphs. We further highlight methods that learn from molecular surfaces, which can predict PPIs not found in nature including interactions induced by small molecules. Finally, we explore the emerging biotechnological applications enabled by these predictive capabilities, including the prediction of antibody–antigen complexes and molecular glue-induced PPIs, and discuss their potential to empower drug discovery and protein engineering.
DNA damage detection in nucleosomes involves DNA register shifting
Access to DNA packaged in nucleosomes is critical for gene regulation, DNA replication and DNA repair. In humans, the UV-damaged DNA-binding protein (UV-DDB) complex detects UV-light-induced pyrimidine dimers throughout the genome; however, it remains unknown how these lesions are recognized in chromatin, in which nucleosomes restrict access to DNA. Here we report cryo-electron microscopy structures of UV-DDB bound to nucleosomes bearing a 6–4 pyrimidine–pyrimidone dimer or a DNA-damage mimic in various positions. We find that UV-DDB binds UV-damaged nucleosomes at lesions located in the solvent-facing minor groove without affecting the overall nucleosome architecture. In the case of buried lesions that face the histone core, UV-DDB changes the predominant translational register of the nucleosome and selectively binds the lesion in an accessible, exposed position. Our findings explain how UV-DDB detects occluded lesions in strongly positioned nucleosomes, and identify slide-assisted site exposure as a mechanism by which high-affinity DNA-binding proteins can access otherwise occluded sites in nucleosomal DNA. Cryo-electron microscopy structures reveal that the DNA-repair factor UV-DDB exposes inaccessible nucleosome lesions for binding by inducing a translational shift in the nucleosome position.