Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
119
result(s) for
"Richardson, Caroline J."
Sort by:
Integrating fragment-based screening with targeted protein degradation and genetic rescue to explore eIF4E function
2024
Eukaryotic initiation factor 4E (eIF4E) serves as a regulatory hub for oncogene-driven protein synthesis and is considered a promising anticancer target. Here we screen a fragment library against eIF4E and identify a ligand-binding site with previously unknown function. Follow-up structure-based design yields a low nM tool compound (
4
, K
d
= 0.09 µM; LE 0.38), which disrupts the eIF4E:eIF4G interaction, inhibits translation in cell lysates, and demonstrates target engagement with eIF4E in intact cells (EC
50
= 2 µM). By coupling targeted protein degradation with genetic rescue using eIF4E mutants, we show that disruption of both the canonical eIF4G and non-canonical binding sites is likely required to drive a strong cellular effect. This work highlights the power of fragment-based drug discovery to identify pockets in difficult-to-drug proteins and how this approach can be combined with genetic characterization and degrader technology to probe protein function in complex biological systems.
A structure-guided fragment screen identified a compound, which interacts with a ligand-binding site of unknown function in eukaryotic initiation factor 4E (eIF4E). X-ray crystallography was used to characterise binding and target engagment was shown in cells.
Journal Article
Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function
by
Williams, Pamela A
,
Murray, Christopher W
,
Pathuri, Puja
in
631/154/309/2420
,
631/326/596/1905
,
631/45/535/1266
2012
A compound derived from a structure-based screen binds to an allosteric site that includes residues of both the helicase and protease domains of HCV NS3, stabilizing an inactive conformation and inhibiting viral replication.
Here we report a highly conserved new binding site located at the interface between the protease and helicase domains of the hepatitis C virus (HCV) NS3 protein. Using a chemical lead, identified by fragment screening and structure-guided design, we demonstrate that this site has a regulatory function on the protease activity via an allosteric mechanism. We propose that compounds binding at this allosteric site inhibit the function of the NS3 protein by stabilizing an inactive conformation and thus represent a new class of direct-acting antiviral agents.
Journal Article
Association between genetically proxied PCSK9 inhibition and prostate cancer risk: A Mendelian randomisation study
by
Richardson, Tom G.
,
Gaunt, Tom R.
,
Davey Smith, George
in
Analysis
,
Biobanks
,
Biology and Life Sciences
2023
Prostate cancer (PrCa) is the second most prevalent malignancy in men worldwide. Observational studies have linked the use of low-density lipoprotein cholesterol (LDL-c) lowering therapies with reduced risk of PrCa, which may potentially be attributable to confounding factors. In this study, we performed a drug target Mendelian randomisation (MR) analysis to evaluate the association of genetically proxied inhibition of LDL-c-lowering drug targets on risk of PrCa.
Single-nucleotide polymorphisms (SNPs) associated with LDL-c (P < 5 × 10-8) from the Global Lipids Genetics Consortium genome-wide association study (GWAS) (N = 1,320,016) and located in and around the HMGCR, NPC1L1, and PCSK9 genes were used to proxy the therapeutic inhibition of these targets. Summary-level data regarding the risk of total, advanced, and early-onset PrCa were obtained from the PRACTICAL consortium. Validation analyses were performed using genetic instruments from an LDL-c GWAS conducted on male UK Biobank participants of European ancestry (N = 201,678), as well as instruments selected based on liver-derived gene expression and circulation plasma levels of targets. We also investigated whether putative mediators may play a role in findings for traits previously implicated in PrCa risk (i.e., lipoprotein a (Lp(a)), body mass index (BMI), and testosterone). Applying two-sample MR using the inverse-variance weighted approach provided strong evidence supporting an effect of genetically proxied inhibition of PCSK9 (equivalent to a standard deviation (SD) reduction in LDL-c) on lower risk of total PrCa (odds ratio (OR) = 0.85, 95% confidence interval (CI) = 0.76 to 0.96, P = 9.15 × 10-3) and early-onset PrCa (OR = 0.70, 95% CI = 0.52 to 0.95, P = 0.023). Genetically proxied HMGCR inhibition provided a similar central effect estimate on PrCa risk, although with a wider 95% CI (OR = 0.83, 95% CI = 0.62 to 1.13, P = 0.244), whereas genetically proxied NPC1L1 inhibition had an effect on higher PrCa risk with a 95% CI that likewise included the null (OR = 1.34, 95% CI = 0.87 to 2.04, P = 0.180). Analyses using male-stratified instruments provided consistent results. Secondary MR analyses supported a genetically proxied effect of liver-specific PCSK9 expression (OR = 0.90 per SD reduction in PCSK9 expression, 95% CI = 0.86 to 0.95, P = 5.50 × 10-5) and circulating plasma levels of PCSK9 (OR = 0.93 per SD reduction in PCSK9 protein levels, 95% CI = 0.87 to 0.997, P = 0.04) on PrCa risk. Colocalization analyses identified strong evidence (posterior probability (PPA) = 81.3%) of a shared genetic variant (rs553741) between liver-derived PCSK9 expression and PrCa risk, whereas weak evidence was found for HMGCR (PPA = 0.33%) and NPC1L1 expression (PPA = 0.38%). Moreover, genetically proxied PCSK9 inhibition was strongly associated with Lp(a) levels (Beta = -0.08, 95% CI = -0.12 to -0.05, P = 1.00 × 10-5), but not BMI or testosterone, indicating a possible role for Lp(a) in the biological mechanism underlying the association between PCSK9 and PrCa. Notably, we emphasise that our estimates are based on a lifelong exposure that makes direct comparisons with trial results challenging.
Our study supports a strong association between genetically proxied inhibition of PCSK9 and a lower risk of total and early-onset PrCa, potentially through an alternative mechanism other than the on-target effect on LDL-c. Further evidence from clinical studies is needed to confirm this finding as well as the putative mediatory role of Lp(a).
Journal Article
An Online Community Improves Adherence in an Internet-Mediated Walking Program. Part 1: Results of a Randomized Controlled Trial
2010
Approximately half of American adults do not meet recommended physical activity guidelines. Face-to-face lifestyle interventions improve health outcomes but are unlikely to yield population-level improvements because they can be difficult to disseminate, expensive to maintain, and inconvenient for the recipient. In contrast, Internet-based behavior change interventions can be disseminated widely at a lower cost. However, the impact of some Internet-mediated programs is limited by high attrition rates. Online communities that allow participants to communicate with each other by posting and reading messages may decrease participant attrition.
Our objective was to measure the impact of adding online community features to an Internet-mediated walking program on participant attrition and average daily step counts.
This randomized controlled trial included sedentary, ambulatory adults who used email regularly and had at least 1 of the following: overweight (body mass index [BMI] ≥ 25), type 2 diabetes, or coronary artery disease. All participants (n = 324) wore enhanced pedometers throughout the 16-week intervention and uploaded step-count data to the study server. Participants could log in to the study website to view graphs of their walking progress, individually-tailored motivational messages, and weekly calculated goals. Participants were randomized to 1 of 2 versions of a Web-based walking program. Those randomized to the \"online community\" arm could post and read messages with other participants while those randomized to the \"no online community\" arm could not read or post messages. The main outcome measures were participant attrition and average daily step counts over 16 weeks. Multiple regression analyses assessed the effect of the online community access controlling for age, sex, disease status, BMI, and baseline step counts.
Both arms significantly increased their average daily steps between baseline and the end of the intervention period, but there were no significant differences in increase in step counts between arms using either intention-to-treat or completers analysis. In the intention-to-treat analysis, the average step count increase across both arms was 1888 ± 2400 steps. The percentage of completers was 13% higher in the online community arm than the no online community arm (online community arm, 79%, no online community arm, 66%, P = .02). In addition, online community arm participants remained engaged in the program longer than no online community arm participants (hazard ratio = 0.47, 95% CI = 0.25 - 0.90, P = .02). Participants with lower baseline social support posted more messages to the online community (P < .001) and viewed more posts (P < .001) than participants with higher baseline social support.
Adding online community features to an Internet-mediated walking program did not increase average daily step counts but did reduce participant attrition. Participants with low baseline social support used the online community features more than those with high baseline social support. Thus, online communities may be a promising approach to reducing attrition from online health behavior change interventions, particularly in populations with low social support.
NCT00729040; http://clinicaltrials.gov/ct2/show/NCT00729040 (Archived by WebCite at http://www.webcitation.org/5v1VH3n0A).
Journal Article
Structure of the BTB Domain of Keap1 and Its Interaction with the Triterpenoid Antagonist CDDO
2014
The protein Keap1 is central to the regulation of the Nrf2-mediated cytoprotective response, and is increasingly recognized as an important target for therapeutic intervention in a range of diseases involving excessive oxidative stress and inflammation. The BTB domain of Keap1 plays key roles in sensing environmental electrophiles and in mediating interactions with the Cul3/Rbx1 E3 ubiquitin ligase system, and is believed to be the target for several small molecule covalent activators of the Nrf2 pathway. However, despite structural information being available for several BTB domains from related proteins, there have been no reported crystal structures of Keap1 BTB, and this has precluded a detailed understanding of its mechanism of action and interaction with antagonists. We report here the first structure of the BTB domain of Keap1, which is thought to contain the key cysteine residue responsible for interaction with electrophiles, as well as structures of the covalent complex with the antagonist CDDO/bardoxolone, and of the constitutively inactive C151W BTB mutant. In addition to providing the first structural confirmation of antagonist binding to Keap1 BTB, we also present biochemical evidence that adduction of Cys 151 by CDDO is capable of inhibiting the binding of Cul3 to Keap1, and discuss how this class of compound might exert Nrf2 activation through disruption of the BTB-Cul3 interface.
Journal Article
Neuron‐specific deletion of CuZnSOD leads to an advanced sarcopenic phenotype in older mice
2020
Age‐associated loss of muscle mass and function (sarcopenia) has a profound effect on the quality of life in the elderly. Our previous studies show that CuZnSOD deletion in mice (Sod1−/− mice) recapitulates sarcopenia phenotypes, including elevated oxidative stress and accelerated muscle atrophy, weakness, and disruption of neuromuscular junctions (NMJs). To determine whether deletion of Sod1 initiated in neurons in adult mice is sufficient to induce muscle atrophy, we treated young (2‐ to 4‐month‐old) Sod1flox/SlickHCre mice with tamoxifen to generate i‐mn‐Sod1KO mice. CuZnSOD protein was 40‐50% lower in neuronal tissue in i‐mn‐Sod1KO mice. Motor neuron number in ventral spinal cord was reduced 28% at 10 months and more than 50% in 18‐ to 22‐month‐old i‐mn‐Sod1KO mice. By 24 months, 22% of NMJs in i‐mn‐Sod1KO mice displayed a complete lack of innervation and deficits in specific force that are partially reversed by direct muscle stimulation, supporting the loss of NMJ structure and function. Muscle mass was significantly reduced by 16 months of age and further decreased at 24 months of age. Overall, our findings show that neuronal‐specific deletion of CuZnSOD is sufficient to cause motor neuron loss in young mice, but that NMJ disruption, muscle atrophy, and weakness are not evident until past middle age. These results suggest that loss of innervation is critical but may not be sufficient until the muscle reaches a threshold beyond which it cannot compensate for neuronal loss or rescue additional fibers past the maximum size of the motor unit. Using deletion of CuZnSOD in motor neurons to induce increased oxidative stress and mimic loss of motor neurons in spinal cord, we show that neuronal loss induces NMJ disruption that progresses over time to cause muscle atrophy and weakness in i‐mn‐Sod1KO mice. The delay between loss of motor neuron number and significant atrophy and weakness suggests there are compensatory mechanisms at play to mitigate the impact of reduced innervation (possibly including increased sprouting) that eventually fail over time.
Journal Article
Evolution of STAT2 resistance to flavivirus NS5 occurred multiple times despite genetic constraints
2024
Zika and dengue virus nonstructural protein 5 antagonism of STAT2, a critical interferon signaling transcription factor, to suppress the host interferon response is required for viremia and pathogenesis in a vertebrate host. This affects viral species tropism, as mouse STAT2 resistance renders only immunocompromised or humanized STAT2 mice infectable. Here, we explore how STAT2 evolution impacts antagonism. By measuring the susceptibility of 38 diverse STAT2 proteins, we demonstrate that resistance arose numerous times in mammalian evolution. In four species, resistance requires distinct sets of multiple amino acid changes that often individually disrupt STAT2 signaling. This reflects an evolutionary ridge where progressive resistance is balanced by the need to maintain STAT2 function. Furthermore, resistance may come with a fitness cost, as resistance that arose early in lemur evolution was subsequently lost in some lemur lineages. These findings underscore that while it is possible to evolve resistance to antagonism, complex evolutionary trajectories are required to avoid detrimental host fitness consequences.
Zika and Dengue virus non-structural protein 5 can antagonise STAT2 modulating the host response and this interaction is involved in determining tropism. Here the authors show mammals independently evolved resistance to flavivirus NS5 multiple times, involving complex genetic changes in STAT2 which balance viral defence whilst maintaining STAT2’s critical functions.
Journal Article
Cost-effectiveness of the ReDIRECT/counterweight-plus weight management programme to alleviate symptoms of long COVID
by
Fraser, Heather L.
,
Richardson, Janice
,
Ormerod, Jane
in
631/326/596/4130
,
692/308/575
,
692/700/3934
2025
Long-term effects of COVID-19 infection, termed Long COVID (LC), are associated with reduced quality of life. Symptoms associated with overweight/obesity overlap with and may aggravate those of LC. This paper reports the economic evaluation alongside the ReDIRECT Trial, which evaluated the impact of an evidence-based, remotely-delivered weight management programme on self-reported symptoms of LC in those living with overweight/obesity in the United Kingdom. Recruited participants (
n
= 234) were randomly allocated to the intervention group (weight management) or control group (usual care). Incremental costs and Quality-Adjusted Life Years (QALYs) were calculated using intervention cost, healthcare resource use and EQ-5D-5L data collected at baseline, three and 6 months. In this work, we show that the ReDIRECT intervention is likely cost-effective in improving LC symptoms from an NHS/PSS perspective, compared to usual care (Incremental Cost-Effectiveness Ratio of £14,754/QALY). Adopting a broader societal perspective, the intervention becomes potentially cost saving compared to usual care.
A recent randomised controlled trial demonstrated effectiveness of a remote diet intervention to reduce long covid symptoms in people living with overweight/obesity in the UK. Here, the authors assess the cost-effectiveness of this intervention from the health system and societal perspectives.
Journal Article
Separating the effects of early and later life adiposity on colorectal cancer risk: a Mendelian randomization study
by
Hughes, David J.
,
Bell, Joshua A.
,
Timpson, Nicholas J.
in
Adiposity - genetics
,
Adult
,
Biomedicine
2023
Background
Observational studies have linked childhood obesity with elevated risk of colorectal cancer; however, it is unclear if this association is causal or independent from the effects of obesity in adulthood on colorectal cancer risk.
Methods
We conducted Mendelian randomization (MR) analyses to investigate potential causal relationships between self-perceived body size (thinner, plumper, or about average) in early life (age 10) and measured body mass index in adulthood (mean age 56.5) with risk of colorectal cancer. The total and independent effects of body size exposures were estimated using univariable and multivariable MR, respectively. Summary data were obtained from a genome-wide association study of 453,169 participants in UK Biobank for body size and from a genome-wide association study meta-analysis of three colorectal cancer consortia of 125,478 participants.
Results
Genetically predicted early life body size was estimated to increase odds of colorectal cancer (odds ratio [OR] per category change: 1.12, 95% confidence interval [CI]: 0.98–1.27), with stronger results for colon cancer (OR: 1.16, 95% CI: 1.00–1.35), and distal colon cancer (OR: 1.25, 95% CI: 1.04–1.51). After accounting for adult body size using multivariable MR, effect estimates for early life body size were attenuated towards the null for colorectal cancer (OR: 0.97, 95% CI: 0.77–1.22) and colon cancer (OR: 0.97, 95% CI: 0.76–1.25), while the estimate for distal colon cancer was of similar magnitude but more imprecise (OR: 1.27, 95% CI: 0.90–1.77). Genetically predicted adult life body size was estimated to increase odds of colorectal (OR: 1.27, 95% CI: 1.03, 1.57), colon (OR: 1.32, 95% CI: 1.05, 1.67), and proximal colon (OR: 1.57, 95% CI: 1.21, 2.05).
Conclusions
Our findings suggest that the positive association between early life body size and colorectal cancer risk is likely due to large body size retainment into adulthood.
Journal Article
Objectively measured physical activity of USA adults by sex, age, and racial/ethnic groups: a cross-sectional study
by
Hawkins, Marquis S
,
Holleman, Robert G
,
Kriska, Andrea M
in
actigraphy
,
Adults
,
Behavioral Sciences
2009
Background
Accelerometers were incorporated in the 2003–2004 National Health and Nutritional Examination Survey (NHANES) study cycle for objective assessment of physical activity. This is the first time that objective physical activity data are available on a nationally representative sample of U.S. residents. The use of accelerometers allows researchers to measure total physical activity, including light intensity and unstructured activities, which may be a better predictor of health outcomes than structured activity alone. The aim of this study was to examine objectively determined physical activity levels by sex, age and racial/ethnic groups in a national sample of U.S. adults.
Methods
Data were obtained from the 2003–2004 NHANES, a cross-sectional study of a complex, multistage probability sample of the U.S. population. Physical activity was assessed with the Actigraph AM-7164 accelerometer for seven days following an examination. 2,688 U.S. adults with valid accelerometer data (i.e. at least four days with at least 10 hours of wear-time) were included in the analysis. Mean daily total physical activity counts, as well as counts accumulated in minutes of light, and moderate-vigorous intensity physical activity are presented by sex across age and racial/ethnic groups. Generalized linear modeling using the log link function was performed to compare physical activity in sex and racial/ethnic groups adjusting for age.
Results
Physical activity decreases with age for both men and women across all racial/ethnic groups with men being more active than women, with the exception of Hispanic women. Hispanic women are more active at middle age (40–59 years) compared to younger or older age and not significantly less active than men in middle or older age groups (i.e. age 40–59 or age 60 and older). Hispanic men accumulate more total and light intensity physical activity counts than their white and black counterparts for all age groups.
Conclusion
Physical activity levels measured objectively by accelerometer demonstrated that Hispanic men are, in general, more active than their white and black counterparts. This appears to be in contrast to self-reported physical activity previously reported in the literature and identifies the need to use objective measures in situations where the contribution of light intensity and/or unstructured physical activity cannot be assumed homogenous across the populations of interest.
Journal Article