Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
74 result(s) for "Richeson, John T."
Sort by:
Bovine respiratory microbiota of feedlot cattle and its association with disease
Bovine respiratory disease (BRD), as one of the most common and costly diseases in the beef cattle industry, has significant adverse impacts on global food security and the economic stability of the industry. The bovine respiratory microbiome is strongly associated with health and disease and may provide insights for alternative therapy when treating BRD. The niche-specific microbiome communities that colonize the inter-surface of the upper and the lower respiratory tract consist of a dynamic and complex ecological system. The correlation between the disequilibrium in the respiratory ecosystem and BRD has become a hot research topic. Hence, we summarize the pathogenesis and clinical signs of BRD and the alteration of the respiratory microbiota. Current research techniques and the biogeography of the microbiome in the healthy respiratory tract are also reviewed. We discuss the process of resident microbiota and pathogen colonization as well as the host immune response. Although associations between the microbiota and BRD have been revealed to some extent, interpreting the development of BRD in relation to respiratory microbial dysbiosis will likely be the direction for upcoming studies, which will allow us to better understand the importance of the airway microbiome and its contributions to animal health and performance.
Microbial communities and tight junction protein expression in the gastrointestinal tract of feedlot cattle
The gastrointestinal tract (GIT) of cattle plays a vital role in nutrient absorption, immune function, and microbial homeostasis. While the importance of the GIT microbiome and epithelial barrier integrity has been increasingly recognized, the typical composition of microbial communities and the expression of tight junction proteins (TJPs) in feedlot cattle remains poorly characterized. We investigated microbial community structure and TJP expression at three GIT sites: the rumen (RU), small intestine (SI), and large intestine (LI) in 21 finish-fed feedlot steers sourced from 21 commercial feedyards in the Texas Panhandle. Samples of luminal contents and GIT tissue were collected from each region, as well as feces and liver abscess material. Microbial communities were characterized using 16S rRNA gene sequencing. TJP gene expression was quantified by RT-qPCR using synthetic standards, and protein expression was evaluated by immunohistochemistry (IHC) with both computer-generated and pathologist-generated scoring. Microbial community structures varied primarily by GIT region rather than by individual animals raised at different locations. Nine bacterial families were identified as core microbiome members, with Lachnospiraceae being the most abundant across the GIT. TJP gene expression varied considerably by site, with RU having significantly lower Claudin 1, Claudin 2, and E-Cadherin expression than the SI and LI. IHC results paralleled qPCR findings, with region-specific patterns of protein localization and intensity. Computerized and pathologist-generated H-scores showed moderate agreement but differed notably between epithelial and lamina propria regions. This study provides a comprehensive baseline of microbial and host factors associated with gut health in a uniquely diverse population of feedlot cattle. The identification of regional microbial communities and distinct TJP expression patterns offers foundational insights into gastrointestinal physiology and barrier function. This work establishes baseline data to support future investigations into the relationships among microbial ecology, epithelial barrier function, and cattle health and productivity.
Establishing the link between microbial communities in bovine liver abscesses and the gastrointestinal tract
Background Liver abscesses (LAs) are one of the most common and important problems faced by the beef industry. The most efficacious method for the prevention of LAs in North America is through dietary inclusion of low doses of antimicrobial drugs such as tylosin, but the mechanisms by which this treatment prevents LAs are not fully understood. LAs are believed to result from mucosal barrier dysfunction in the gastrointestinal tract (GIT) allowing bacterial translocation to the liver via the portal vein, yet differences in the GIT microbiome of cattle with and without LAs have not been explored. Here, we characterized microbial communities from LAs, rumen, ileum, and colon from the same cattle for the first time. Results Results demonstrate that tylosin supplementation was associated with differences in microbial community structure in the rumen and small intestine, largely because of differences in the predominance of Clostridia. Importantly, we show for the first time that microbial communities from multiple LAs in one animal’s liver are highly similar, suggesting that abscesses found at different locations in the liver may originate from a localized source in the GIT (rather than disparate locations). A large portion of abscesses were dominated by microbial taxa that were most abundant in the hindgut. Further, we identified taxa throughout the GIT that were differentially abundant between animals with and without liver abscesses. Bifidobacterium spp.—a bacteria commonly associated with a healthy GIT in several species—were more abundant in the rumen and ileum of animals without LAs compared to those with LAs. Conclusions Together these results provide the first direct comparison of GIT and LA microbial communities within the same animal, add considerable evidence to the hypothesis that some LA microbial communities arise from the hindgut, and suggest that barrier dysfunction throughout the GIT may be the underlying cause of LA formation in cattle.
Does swab type matter? Comparing methods for Mannheimia haemolytica recovery and upper respiratory microbiome characterization in feedlot cattle
Background Bovine respiratory disease (BRD) is caused by interactions among host, environment, and pathogens. One standard method for antemortem pathogen identification in cattle with BRD is deep-guarded nasopharyngeal swabbing, which is challenging, costly, and waste generating. The objective was to compare the ability to recover Mannheimia haemolytica and compare microbial community structure using 29.5 inch (74.9 cm) deep-guarded nasopharyngeal swabs, 16 inch (40.6 cm) unguarded proctology swabs, or 6 inch (15.2 cm) unguarded nasal swabs when characterized using culture, real time-qPCR, and 16S rRNA gene sequencing. Samples for aerobic culture, qPCR, and 16S rRNA gene sequencing were collected from the upper respiratory tract of cattle 2 weeks after feedlot arrival. Results There was high concordance of culture and qPCR results for all swab types (results for 77% and 81% of sampled animals completely across all 3 swab types for culture and qPCR respectively). Microbial communities were highly similar among samples collected with different swab types, and differences identified relative to treatment for BRD were also similar. Positive qPCR results for M. haemolytica were highly concordant (81% agreed completely), but samples collected by deep-guarded swabbing had lower amounts of Mh DNA identified (Kruskal–Wallis analysis of variance on ranks, P  < 0.05; Dunn-test for pairwise comparison with Benjamini–Hochberg correction, P  < 0.05) and lower frequency of positive compared to nasal and proctology swabs (McNemar’s Chi-square test, P  < 0.05). Conclusions Though differences existed among different types of swabs collected from individual cattle, nasal swabs and proctology swabs offer comparable results to deep-guarded nasopharyngeal swabs when identifying and characterizing M. haemolytica by culture, 16S rRNA gene sequencing, and qPCR.
Behavior assessment and applications for BRD diagnosis: beef
Assessment of behavior is a longstanding strategy to assist the diagnosis of clinical bovine respiratory disease (BRD) in beef cattle. Cattle with systemic inflammation caused by infectious pathogen(s) display predictable behavioral adaptations compared to healthy cohorts. Behavioral alterations in BRD-affected cattle include lethargy, social isolation, and anorexia. However, behavior assessment to support BRD case definition in the production setting is challenging because: (1) other bovine diseases cause behavior alterations similar to BRD; (2) cattle have inherent prey instinct to disguise sickness behavior during human evaluation; (3) labor constraints dictate very brief observation of animal behavior; and (4) traditional behavior assessment is subjective and agreement is often poor. Some of these challenges may be overcome with the use of advanced technologies that allow continuous, remote, and objective behavior assessment of individual cattle. Automated methodologies for behavior assessment include three-axis accelerometers that quantify physical behaviors, systems that document feeding/watering behavior, and triangulation systems that document spatial behavior. Each of these behavior-monitoring approaches generates unique information and may facilitate early detection of BRD compared to traditional methods. Nevertheless, adoption of behavior assessment technologies for BRD diagnosis in beef operations hinges upon improved detection, positive return on investment, and successful integration within existing BRD management practices.
An Experimental Field Trial Investigating the Use of Bacteriophage and Manure Slurry Applications in Beef Cattle Feedlot Pens for Salmonella Mitigation
Post-harvest Salmonella mitigation techniques are insufficient at addressing Salmonella harbored in cattle lymph nodes, necessitating the exploration of pre-harvest alternatives that reduce Salmonella prior to dissemination to the lymph nodes. A 2 × 2, unbalanced experiment was conducted to determine the effectiveness of pre-harvest treatments applied to the pen surface for Salmonella mitigation in cattle. Treatments included manure slurry intended to mimic pen run-off water (n = 4 pens), a bacteriophage cocktail (n = 4), a combination of both treatments (n = 5), and a control group (n = 5) that received no treatment. Environment samples from 18 feedlot pens and fecal grabs, hide swabs, and subiliac lymph nodes from 178 cattle were collected and selectively enriched for Salmonella, and Salmonella isolates were sequenced. The combination treatment was most effective at reducing Salmonella, and the prevalence was significantly lower compared with the control group for rump swabs on Days 14 and 21. The treatment impact on Salmonella in the lymph nodes could not be determined due to low prevalence. The reduction on cattle hides suggests that bacteriophage or water treatments applied to the feedlot pen surface may reduce Salmonella populations in cattle during the pre-harvest period, resulting in reduced contamination during slaughter and processing.
Immune Responses and Performance Are Influenced by Respiratory Vaccine Antigen Type and Stress in Beef Calves
The study objective was to determine if a combined weaning and transportation stress model affected performance, antibody, endocrine, or hematological responses to modified-live virus (MLV) or killed virus (KV) respiratory vaccination in beef steers. In total, 48 calves (Day 0 BW = 226 ± 6.2 kg) from a single origin were used in a 2 × 2 factorial to evaluate main effects of stress model, vaccine type, and their interaction, resulting in four treatments (n = 12/treatment) including non-stress control (C) with KV (CKV), C with MLV (CMLV), stress model implementation (S) with KV (SKV), and S with MLV (SMLV). The C calves were weaned at the origin ranch on Day −37 and transported 472 km to the study site on Day −21 to allow acclimation. The S calves were weaned on Day −3, transported 460 km to a research facility on Day −2, held overnight, and transported 164 km to the study site on Day −1 to mimic the beef cattle marketing process. Vaccines were administered on Day 0 and KV was revaccinated on Day 14. The animal was the experimental unit and dependent variables were analyzed using PROC MIXED with repeated measures (day). A stress model effect (p = 0.01) existed for DMI from Day 0 to Day 7 with greater DMI for C (6.19 vs. 4.64 kg/day) when compared to S. The MLV groups had reduced (p = 0.05) ADG from Day 0 to Day 56, compared to KV. There was a vaccine type × day (p < 0.01) interaction with increased (p ≤ 0.01) PI3V- and IBRV-specific antibody titers for KV on Day 21; conversely, MLV had increased (p ≤ 0.01) BVDV titers on Days 14, 28, 35, 42, 49, and 56. Increased (p ≤ 0.05) BRSV titers were observed in a stress model × day (p < 0.01) interaction for S on Days 21, 28, 36, and 42; however, C exceeded S in BVDV-specific antibody concentration on Days 21, 28, and 49. A day effect (p < 0.01) was observed for serum haptoglobin with the greatest (p < 0.01) concentration on Day 3. Serum cortisol concentration was greater (p ≤ 0.04) for C vs. S on Days −2, 0, 1, 3, and 5. Total leukocytes were decreased for C vs. S on Days 0, 1, 3, 5, 7, 14, and 21 (p ≤ 0.02). A reduction (p ≤ 0.04) in total leukocytes was observed for MLV on Days 5, 7, and 14 vs. KV. Neutrophils and neutrophil:lymphocyte were markedly increased (p ≤ 0.01) for S on Day −2, whereas neutrophils were decreased (p ≤ 0.01) on Days 1 and 21 for S. Monocytes were decreased on Days 1, 5 and 7 for MLV (p ≤ 0.04) and Days −2 to 14 for S (p ≤ 0.03). Eosinophils were reduced (p = 0.007) for S vs. C on Day −2, yet a distinct rebound response (p = 0.03) was noted for S on Day 0. The results indicate that S and MLV vaccination more profoundly induced immunomodulation in beef calves.
BEEF SPECIES–RUMINANT NUTRITION CACTUS BEEF SYMPOSIUM: Energy and roughage levels in cattle receiving diets and impacts on health, performance, and immune responses
Transition of newly received feedlot cattle from a forage- to grain-based diet is challenging, and the appropriate roughage level in receiving diets is debatable. Nutritionists must consider the paradox of dietary transition and roughage level to mitigate ruminal acidosis, yet concomitantly low feed intake presents difficulty in achieving nutrient requirements when metabolic demand is increased due to inherent stress and disease challenge during the receiving period. Previous research suggests that performance is improved at the expense of increased morbidity for newly received cattle consuming diets with less roughage and greater starch concentration. The clinical signs of bovine respiratory disease (BRD) and acute acidosis are analogous; therefore, it is probable that acidotic cattle are incorrectly diagnosed with BRD in both research and production settings. Additional research efforts have attempted to elucidate alterations in microbial populations and digestion, physiological response to inflammatory challenge, and immunological response to infectious bovine rhinotracheitis virus challenge in cattle consuming diets of various roughage levels. Furthermore, our understanding of the rumen microbiome is improving rapidly with culture-independent assays, products such as direct-fed microbials are available, and increased availability and use of fibrous byproduct ingredients requires further attention. Beef cattle nutritionists and producers should consider that the health benefit of receiving diets containing greater levels of roughage and lower energy may not compensate for the reduction in performance compared with feeding receiving diets with lower roughage and greater energy.
Oral hydration therapy with water and bovine respiratory disease incidence affects rumination behavior, rumen pH, and rumen temperature in high-risk, newly received beef calves
Abstract The study objectives were to determine the effect of oral hydration therapy and bovine respiratory disease (BRD) on rumination behavior, rumen pH, and rumen temperature. A random subset of high-risk, auction-sourced bulls from 3 truckload blocks (initial BW = 188.9 ± 19.1 kg) were fitted with a collar containing a 3-axis accelerometer to quantify rumination time and activity (n = 58) and administered a rumen pH and temperature data logging bolus (n = 33). At arrival, subset calves (n = 2 per pen) were balanced across treatment pens (n = 15 per treatment; n = 10 animals per pen) and randomized to receive 0.57 L water/45.4 kg BW from a modified oral drenching apparatus (H2O) or no water administration (CON). Standard arrival processing procedures were implemented including surgical castration. Modified-live virus respiratory vaccination was delayed until day 28. Technicians assigned a clinical illness score (CIS) daily; calves with CIS ≥ 2 and rectal temperature ≥ 40 °C were considered a BRD case (RCASE) and treated with an antimicrobial. The fixed effect of BRD cases vs. nontreated cohorts (RCON) was determined retrospectively using data from the accelerometer collar (n = 19 and 29) and rumen bolus (n = 12 and 21, for RCASE and RCON, respectively). Daily means and hourly means across days throughout the 56-d observation period were generated. Fixed effects were analyzed using the mixed model procedure with repeated measures. Daily rumen temperature was altered (P = 0.04) such that peak rumen temperature occurred earlier for H2O, whereas CON had increased (P ≤ 0.01) rumen temperature following delayed vaccination on day 28. Calves diagnosed with BRD had a transiently decreased (P = 0.04) active minutes between days 9 and 32, decreased (P < 0.01) active minutes between 0800 and 2000 h, decreased (P < 0.01) rumination time between 2000 and 0400 h, greater (P < 0.01) rumen temperature until delayed vaccination on day 28, and greater (P < 0.01) hourly rumen temperature between 0900 and 0300, and altered (P < 0.01) rumen pH. Earlier peak rumen temperature observed in H2O may indicate physiological modification enabling a more pronounced inflammatory response. Differences in rumination behavior and activity may be useful for early BRD detection.
Performance, rumination, and rumen pH responses to different dietary energy density and feed management strategies in auction-derived feedlot cattle
Abstract Auction-derived steers (n = 36; initial BW = 284 ± 11 kg) were received to compare performance, rumination characteristics, and rumen pH differences due to alternative ration energy densities and feed management strategies during a 56 d receiving study. Cattle were weighed on day -1 and randomized to 1 of 3 treatments. Time spent ruminating was quantified with a three-axis accelerometer ear-tag. Rumen pH and temperature were logged in a random subset (n = 6 per treatment) by a ruminal bolus. Cattle were processed identically and housed in individual pens. The modified-live virus respiratory vaccination was delayed until day 28. The finisher (FIN) cattle were provided their daily feed as a high energy density (1.39 Mcal NEg/kg) diet. The finisher + hay (FIN+H) cattle were provided the same diet but were also offered 0.5% BW DM as coastal Bermudagrass hay on days 1, 4, 7, 10, 13, 16, 19, 22, 25, and 28. The control (CON) cattle were fed a low energy density (0.93 Mcal NEg/kg) diet from day 0 to 7, then transitioned to the FIN diet by replacing an additional 25% of the daily feed call with FIN every 7 d until 100% of the diet was FIN on day 29. Feed offering for CON was increased more aggressively (0.45 kg DM daily for days 1 to 7, every other day for day 8 to 14) than FIN and FIN+H (0.45 kg DM every other day for days 1 to 7, daily for days 8 to 14). Performance and DMI were analyzed using PROC MIXED in SAS with treatment as a fixed effect. Rumination, pH, and temperature models included repeated measures. There was no treatment difference observed for BW, average daily gain (ADG), or G:F (P ≥ 0.12). There was a treatment × day interaction (P = 0.06) for rumen temperature, where FIN increased more rapidly following vaccination on day 28 compared to CON (P ≤ 0.04). Daily rumination minutes were greater (P < 0.01) for CON than FIN from days 7 to 22. Additionally, CON had the greatest (P < 0.01) hourly rumination from 2000 to 0800 hours. Lower minimum daily rumen pH occurred in FIN+H (P ≤ 0.06) on weeks 1, 2 and 6 to 8 compared to CON. There were minimal statistical differences in area under the curve or time below pH thresholds, probably due to large animal-to-animal variation. Hourly rumen pH was reduced (P ≤ 0.05) for FIN vs. FIN+H and CON during the initial 28 d, but greater (P = 0.05) for FIN and FIN+H during the final 28 d. When cattle are individually fed, greater energy density rations can be fed initially without compromising performance, but this needs to be evaluated in group pens where greater DMI variation is probable.