Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Rieble, Carlotta L."
Sort by:
Optimizing the frequency of ecological momentary assessments using signal processing
Ecological momentary assessment (EMA) is increasingly recognized as a vital tool for tracking the fluctuating nature of mental states and symptoms in psychiatric research. However, determining the optimal sampling rate - that is, deciding how often participants should be queried to report their symptoms - remains a significant challenge. To address this issue, our study utilizes the Nyquist-Shannon theorem from signal processing, which establishes that any sampling rate more than twice the highest frequency component of a signal is adequate. We applied the Nyquist-Shannon theorem to analyze two EMA datasets on depressive symptoms, encompassing a combined total of 35,452 data points collected over periods ranging from 30 to 90 days per individual. Our analysis of both datasets suggests that the most effective sampling strategy involves measurements at least every other week. We find that measurements at higher frequencies provide valuable and consistent information across both datasets, with significant peaks at weekly and daily intervals. Ideal frequency for measurements remains largely consistent, regardless of the specific symptoms used to estimate depression severity. For conditions in which abrupt or transient symptom dynamics are expected, such as during treatment, more frequent data collection is recommended. However, for regular monitoring, weekly assessments of depressive symptoms may be sufficient. We discuss the implications of our findings for EMA study optimization, address our study's limitations, and outline directions for future research.
Introducing FRED: Software for Generating Feedback Reports for Ecological Momentary Assessment Data
Ecological Momentary Assessment (EMA) is a data collection approach utilizing smartphone applications or wearable devices to gather insights into daily life. EMA has advantages over traditional surveys, such as increasing ecological validity. However, especially prolonged data collection can burden participants by disrupting their everyday activities. Consequently, EMA studies can have comparably high rates of missing data and face problems of compliance. Giving participants access to their data via accessible feedback reports, as seen in citizen science initiatives, may increase participant motivation. Existing frameworks to generate such reports focus on single individuals in clinical settings and do not scale well to large datasets. Here, we introduce FRED (Feedback Reports on EMA Data) to tackle the challenge of providing personalized reports to many participants. FRED is an interactive online tool in which participants can explore their own personalized data reports. We showcase FRED using data from the WARN-D study, where 867 participants were queried for 85 consecutive days with four daily and one weekly survey, resulting in up to 352 observations per participant. FRED includes descriptive statistics, time-series visualizations, and network analyses on selected EMA variables. Participants can access the reports online as part of a Shiny app, developed via the R programming language. We make the code and infrastructure of FRED available in the hope that it will be useful for both research and clinical settings, given that it can be flexibly adapted to the needs of other projects with the goal of generating personalized data reports.