Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
45
result(s) for
"Riedl, Valentin"
Sort by:
Evaluation of Multiband EPI Acquisitions for Resting State fMRI
by
Bührer, Martin
,
Preibisch, Christine
,
Castrillón G., J. Gabriel
in
Acceleration
,
Brain
,
Brain - physiology
2015
Functional magnetic resonance imaging (fMRI) and particularly resting state fMRI (rs-fMRI) is widely used to investigate resting state brain networks (RSNs) on the systems level. Echo planar imaging (EPI) is the state-of-the-art imaging technique for most fMRI studies. Therefore, improvements of EPI might lead to increased sensitivity for a large amount of studies performed every day. A number of developments to shorten acquisition time have been recently proposed and the multiband technique, allowing the simultaneous acquisition of multiple slices yielding an equivalent reduction of measurement time, is the most promising among them. While the prospect to significantly reduce acquisition time by means of high multiband acceleration factors (M) appears tempting, signal quality parameters and the sensitivity to detect common RSNs with increasing M-factor have only been partially investigated up to now. In this study, we therefore acquired rs-fMRI data from 20 healthy volunteers to systematically investigate signal characteristics and sensitivity for brain network activity in datasets with increasing M-factor, M = 2 - 4. Combined with an inplane, sensitivity encoding (SENSE), acceleration factor, S = 2, we applied a maximal acceleration factor of 8 (S2×M4). Our results suggest that an M-factor of 2 (total acceleration of 4) only causes negligible SNR decrease but reveals common RSN with increased sensitivity and stability. Further M-factor increase produced random artifacts as revealed by signal quality measures that may affect interpretation of RSNs under common scanning conditions. Given appropriate hardware, a mb-EPI sequence with a total acceleration of 4 significantly reduces overall scanning time and clearly increases sensitivity to detect common RSNs. Together, our results suggest mb-EPI at moderate acceleration factors as a novel standard for fMRI that might increase our understanding of network dynamics in healthy and diseased brains.
Journal Article
Selective Changes of Resting-State Networks in Individuals at Risk for Alzheimer's Disease
by
Läer, Leonhard
,
Mühlau, Mark
,
Drzezga, Alexander
in
Aged
,
Aged, 80 and over
,
Alzheimer disease
2007
Alzheimer's disease (AD) is a neurodegenerative disorder that prominently affects cerebral connectivity. Assessing the functional connectivity at rest, recent functional MRI (fMRI) studies reported on the existence of resting-state networks (RSNs). RSNs are characterized by spatially coherent, spontaneous fluctuations in the blood oxygen level-dependent signal and are made up of regional patterns commonly involved in functions such as sensory, attention, or default mode processing. In AD, the default mode network (DMN) is affected by reduced functional connectivity and atrophy. In this work, we analyzed functional and structural MRI data from healthy elderly (n = 16) and patients with amnestic mild cognitive impairment (aMCI) (n = 24), a syndrome of high risk for developing AD. Two questions were addressed: (i) Are any RSNs altered in aMCI? (ii) Do changes in functional connectivity relate to possible structural changes? Independent component analysis of restingstate fMRI data identified eight spatially consistent RSNs. Only selected areas of the DMN and the executive attention network demonstrated reduced network-related activity in the patient group. Voxel-based morphometry revealed atrophy in both medial temporal lobes (MTL) of the patients. The functional connectivity between both hippocampi in the MTLs and the posterior cingulate of the DMN was present in healthy controls but absent in patients. We conclude that in individuals at risk for AD, a specific subset of RSNs is altered, likely representing effects of ongoing early neurodegeneration. We interpret our finding as a proof of principle, demonstrating that functional brain disorders can be characterized by functional-disconnectivity profiles of RSNs.
Journal Article
Common and distinct changes of default mode and salience network in schizophrenia and major depression
by
Meng, Chun
,
Yang, Qinli
,
Shao, Junming
in
Aberration
,
Brain
,
Functional magnetic resonance imaging
2018
Brain imaging reveals schizophrenia as a disorder of macroscopic brain networks. In particular, default mode and salience network (DMN, SN) show highly consistent alterations in both interacting brain activity and underlying brain structure. However, the same networks are also altered in major depression. This overlap in network alterations induces the question whether DMN and SN changes are different across both disorders, potentially indicating distinct underlying pathophysiological mechanisms. To address this question, we acquired T1-weighted, diffusion-weighted, and resting-state functional MRI in patients with schizophrenia, patients with major depression, and healthy controls. We measured regional gray matter volume, inter-regional structural and intrinsic functional connectivity of DMN and SN, and compared these measures across groups by generalized Wilcoxon rank tests, while controlling for symptoms and medication. When comparing patients with controls, we found in each patient group SN volume loss, impaired DMN structural connectivity, and aberrant DMN and SN functional connectivity. When comparing patient groups, SN gray matter volume loss and DMN structural connectivity reduction did not differ between groups, but in schizophrenic patients, functional hyperconnectivity between DMN and SN was less in comparison to depressed patients. Results provide evidence for distinct functional hyperconnectivity between DMN and SN in schizophrenia and major depression, while structural changes in DMN and SN were similar. Distinct hyperconnectivity suggests different pathophysiological mechanism underlying aberrant DMN-SN interactions in schizophrenia and depression.
Journal Article
Changes in extra-striatal functional connectivity in patients with schizophrenia in a psychotic episode
by
Manoliu, Andrei
,
Koch, Kathrin
,
Riedl, Valentin
in
Adult
,
Cerebral Cortex - physiopathology
,
Connectome - methods
2017
In patients with schizophrenia in a psychotic episode, intra-striatal intrinsic connectivity is increased in the putamen but not ventral striatum. Furthermore, multimodal changes have been observed in the anterior insula that interact extensively with the putamen.
We hypothesised that during psychosis, putamen extra-striatal functional connectivity is altered with both the anterior insula and areas normally connected with the ventral striatum (i.e. altered functional connectivity distinctiveness of putamen and ventral striatum).
We acquired resting-state functional magnetic resonance images from 21 patients with schizophrenia in a psychotic episode and 42 controls.
Patients had decreased functional connectivity: the putamen with right anterior insula and dorsal prefrontal cortex, the ventral striatum with left anterior insula. Decreased functional connectivity between putamen and right anterior insula was specifically associated with patients' hallucinations. Functional connectivity distinctiveness was impaired only for the putamen.
Results indicate aberrant extra-striatal connectivity during psychosis and a relationship between reduced putamen-right anterior insula connectivity and hallucinations. Data suggest that altered intrinsic connectivity links striatal and insular pathophysiology in psychosis.
Journal Article
Aberrant Intrinsic Connectivity of Hippocampus and Amygdala Overlap in the Fronto-Insular and Dorsomedial-Prefrontal Cortex in Major Depressive Disorder
by
Doll, Anselm
,
Khazaie, Habibolah
,
Drzezga, Alexander
in
Amygdala
,
Brain mapping
,
Brain research
2013
Neuroimaging studies of major depressive disorder (MDD) have consistently observed functional and structural changes of the hippocampus (HP) and amygdale (AY). Thus, these brain regions appear to be critical elements of the pathophysiology of MDD. The HP and AY directly interact and show broad and overlapping intrinsic functional connectivity (iFC) to other brain regions. Therefore, we hypothesized the HP and AY would show a corresponding pattern of aberrant intrinsic connectivity in MDD. Resting-state functional MRI was acquired from 21 patients with MDD and 20 healthy controls. ß-Maps of region-of-interest-based FC for bilateral body of the HP and basolateral AY were used as surrogates for iFC of the HP and AY. Analysis of variance was used to compare ß-maps between MDD and healthy control groups, and included covariates for age and gender as well as gray matter volume of the HP and AY. The HP and AY of MDD patient's showed an overlapping pattern of reduced FC to the dorsomedial-prefrontal cortex and fronto-insular operculum. Both of these regions are known to regulate the interactions among intrinsic networks (i.e., default mode, central executive, and salience networks) that are disrupted in MDD. These results provide the first evidence of overlapping aberrant HP and AY intrinsic connectivity in MDD. Our findings suggest that aberrant HP and AY connectivity may interact with dysfunctional intrinsic network activity in MDD.
Journal Article
Insular Dysfunction Reflects Altered Between-Network Connectivity and Severity of Negative Symptoms in Schizophrenia during Psychotic Remission
by
Doll, Anselm
,
Mühlau, Mark
,
Scherr, Martin
in
Anterior Insula
,
central executive network
,
Default Mode Network
2013
Schizophrenia is characterized by aberrant intrinsic functional connectivity (iFC) within and between intrinsic connectivity networks (ICNs), including the Default Mode- (DMN), Salience- (SN), and Central Executive Network (CEN). The anterior insula (AI) of the SN has been demonstrated to modulate DMN/CEN interactions. Recently, we found that the dependence of DMN/CEN interactions on SN's right AI activity is altered in patients with schizophrenia in acute psychosis and related to psychotic symptoms, indicating a link between aberrant AI, DMN, CEN, and psychosis. However, since structural alterations of the insula are also present during psychotic remission and associated with negative symptoms, impaired AI interaction might be relevant even for psychotic remission and corresponding symptoms. Twelve patients with schizophrenia during psychotic remission (SR) and 12 healthy controls were assessed using resting-state fMRI and psychometric examination. High-model-order independent component analysis of fMRI data revealed ICNs including DMN, SN, and CEN. Scores of iFC within (intra-iFC) and between (inter-iFC) distinct subsystems of the DMN, SN, and CEN were calculated, compared between groups and correlated with the severity of symptoms. Intra-iFC was altered in patients' SN, DMN, and CEN, including decreased intra-iFC in the left AI within the SN. Patients' inter-iFC between SN and CEN was increased and correlated with the severity of negative symptoms. Furthermore, decreased intra-iFC of the left AI correlated with both severity of negative symptoms and increased inter-iFC between SN and CEN. Our result provides first evidence for a relationship between AI dysfunction and altered between-network interactions in schizophrenia during psychotic remission, which is related to the severity of negative symptoms. Together with our previous results, data suggest specific SN/DMN/CEN reorganization in schizophrenia with distinct insular pathways for distinct symptom dimensions.
Journal Article
Repeated pain induces adaptations of intrinsic brain activity to reflect past and predict future pain
by
Valet, Michael
,
Wohlschläger, Afra M.
,
Riedl, Valentin
in
Adaptation
,
Adaptation, Physiological - physiology
,
Adaptations
2011
Recent neuroimaging studies have revealed a persistent architecture of intrinsic connectivity networks (ICNs) in the signal of functional magnetic resonance imaging (fMRI) of humans and other species. ICNs are characterized by coherent ongoing activity between distributed brain regions during rest, in the absence of externally oriented behavior. While these networks strongly reflect anatomical connections, the relevance of ICN activity for human behavior remains unclear. Here, we investigated whether intrinsic brain activity adapts to repeated pain and encodes an individual's experience. Healthy subjects received a short episode of heat pain on 11 consecutive days. Across this period, subjects either habituated or sensitized to the painful stimulation. This adaptation was reflected in plasticity of a sensorimotor ICN (SMN) comprising pain related brain regions: coherent intrinsic activity of the somatosensory cortex retrospectively mirrored pain perception; on day 11, intrinsic activity of the prefrontal cortex was additionally synchronized with the SMN and predicted whether an individual would experience more or less pain during upcoming stimulation. Other ICNs of the intrinsic architecture remained unchanged. Due to the ubiquitous occurrence of ICNs in several species, we suggest intrinsic brain activity as an integrative mechanism reflecting accumulated experiences.
► Repeated pain changes coherent intrinsic brain activity of a sensorimotor network. ► Activity in somatosensory cortex retrospectively codes recent pain perception. ► Prefrontal cortex predicts upcoming pain intensity on the basis of previous pain.
Journal Article
Impact of Global Mean Normalization on Regional Glucose Metabolism in the Human Brain
by
Hyder, Fahmeed
,
Laureys, S.
,
Gjedde, A.
in
Adult
,
Blindness - congenital
,
Blindness - diagnostic imaging
2018
Because the human brain consumes a disproportionate fraction of the resting body’s energy, positron emission tomography (PET) measurements of absolute glucose metabolism (CMRglc) can serve as disease biomarkers. Global mean normalization (GMN) of PET data reveals disease-based differences from healthy individuals as fractional changes across regions relative to a global mean. To assess the impact of GMN applied to metabolic data, we compared CMRglc with and without GMN in healthy awake volunteers with eyes closed (i.e., control) against specific physiological/clinical states, including healthy/awake with eyes open, healthy/awake but congenitally blind, healthy/sedated with anesthetics, and patients with disorders of consciousness. Without GMN, global CMRglc alterations compared to control were detected in all conditions except in congenitally blind where regional CMRglc variations were detected in the visual cortex. However, GMN introduced regional and bidirectional CMRglc changes at smaller fractions of the quantitative delocalized changes. While global information was lost with GMN, the quantitative approach (i.e., a validated method for quantitative baseline metabolic activity without GMN) not only preserved global CMRglc alterations induced by opening eyes, sedation, and varying consciousness but also detected regional CMRglc variations in the congenitally blind. These results caution the use of GMN upon PET-measured CMRglc data in health and disease.
Journal Article
Early Morphologic and Spectroscopic Magnetic Resonance in Severe Traumatic Brain Injuries Can Detect “Invisible Brain Stem Damage” and Predict “Vegetative States”
by
Carpentier, Alexandre
,
Effenterre, Remy van
,
Galanaud, Damien
in
Adult
,
Biological and medical sciences
,
Brain damage
2006
A precise evaluation of the brain damage in the first days of severe traumatic brain injured (TBI) patients is still uncertain despite numerous available cerebral evaluation methods and imaging. In 5–10% of severe TBI patients, clinicians remain concerned with prolonged coma and long-term marked cognitive impairment unexplained by normal morphological T2 star, flair, and diffusion magnetic resonance imaging (MRI). For this reason, we prospectively assessed the potential value of magnetic resonance spectroscopy (MRS) of the brain stem to evaluate the functionality of the consciousness areas. Forty consecutive patients with severe TBI were included. Single voxel proton MRS of the brain stem and morphological MRI of the whole brain were performed at day 17.5 ± 6.4. Disability Rating Scale and Glasgow Outcome Scale (GOS) were evaluated at 18 months post-trauma. MRS appeared to be a reliable tool in the exploration of brainstem metabolism in TBI. Three different spectra were observed (normal, cholinergic reaction, or neuronal damage) allowing an evaluation of functional damage. MRS disturbances were not correlated with anatomical MRI lesions suggesting that the two techniques are strongly complementarity. In two GOS 2 vegetative patients with normal morphological MRI, MRS detected severe functional damage of the brainstem (NAA/Cr < 1.50) that was described as “invisible brain stem damage.” MRI and MRS taken separately could not distinguish patients GOS 3 (n = 7) from GOS 1–2 (n = 11) and GOS 4–5 (n = 20). However, a principal component analysis of combined MRI and MRS data enabled a clear-cut separation between GOS 1–2, GOS 3, and GOS 4–5 patients with no overlap between groups. This study showed that combined MRI and MRS provide a reliable evaluation of patients presenting in deep coma, specially when there are insufficient MRI lesions of the consciousness pathways to explain their status. In the first few days post-trauma metabolic (brainstem spectroscopy) and morphological (T2 star and Flair) MRI studies can predict the long-term neurological outcome, especially the persistent vegetative states and minimally conscious state.
Journal Article
Ongoing Slow Fluctuations in V1 Impact on Visual Perception
by
Draheim, Johanna
,
Shao, Junming
,
Wohlschläger, Afra M.
in
backward masking
,
Behavior
,
Brain mapping
2016
The human brain's ongoing activity is characterized by intrinsic networks of coherent fluctuations, measured for example with correlated functional magnetic resonance imaging signals. So far, however, the brain processes underlying this ongoing blood oxygenation level dependent (BOLD) signal orchestration and their direct relevance for human behavior are not sufficiently understood. In this study, we address the question of whether and how ongoing BOLD activity within intrinsic occipital networks impacts on conscious visual perception. To this end, backwardly masked targets were presented in participants' left visual field only, leaving the ipsi-lateral occipital areas entirely free from direct effects of task throughout the experiment. Signal time courses of ipsi-lateral BOLD fluctuations in visual areas V1 and V2 were then used as proxies for the ongoing contra-lateral BOLD activity within the bilateral networks. Magnitude and phase of these fluctuations were compared in trials with and without conscious visual perception, operationalized by means of subjective confidence ratings. Our results show that ipsi-lateral BOLD magnitudes in V1 were significantly higher at times of peak response when the target was perceived consciously. A significant difference between conscious and non-conscious perception with regard to the pre-target phase of an intrinsic-frequency regime suggests that ongoing V1 fluctuations exert a decisive impact on the access to consciousness already before stimulation. Both effects were absent in V2. These results thus support the notion that ongoing slow BOLD activity within intrinsic networks covering V1 represents localized processes that modulate the degree of readiness for the emergence of visual consciousness.
Journal Article