Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
196
result(s) for
"Rieke, George H"
Sort by:
New HST data and modeling reveal a massive planetesimal collision around Fomalhaut
2020
The apparent detection of an exoplanet orbiting Fomalhaut was announced in 2008. However, subsequent observations of Fomalhaut b raised questions about its status: Unlike other exoplanets, it is bright in the optical and nondetected in the infrared, and its orbit appears to cross the debris ring around the star without the expected gravitational perturbations. We revisit previously published data and analyze additional Hubble Space Telescope (HST) data, finding that the source is likely on a radial trajectory and has faded and become extended. Dynamical and collisional modeling of a recently produced dust cloud yields results consistent with the observations. Fomalhaut b appears to be a directly imaged catastrophic collision between two large planetesimals in an extrasolar planetary system. Similar events should be very rare in quiescent planetary systems of the age of Fomalhaut, suggesting that we are possibly witnessing the effects of gravitational stirring due to the orbital evolution of hypothetical planet(s) around the star.
Journal Article
The Quantum Efficiency and Diffractive Image Artifacts of Si
by
Ressler, Michael E.
,
Argyriou, Ioannis
,
Dicken, Daniel
in
Absorption
,
Arsenic
,
Astronomical Software, Data Analysis, and Techniques
2021
Arsenic doped back illuminated blocked impurity band (BIBIB) silicon detectors have advanced near and mid-IR astronomy for over thirty years; they have high quantum efficiency (QE), especially at wavelengths longer than 10 μm, and a large spectral range. Their radiation hardness is also an asset for space based instruments. Three examples of Si:As BIBIB arrays are used in the Mid-InfraRed Instrument (MIRI) of the James Webb Space Telescope (JWST), observing between 5 and 28 μm. In this paper, we analyze the parameters leading to high quantum efficiency (up to ∼60%) for the MIRI devices between 5 and 10 μm. We also model the cross-shaped artifact that was first noticed in the 5.7 and 7.8 μm Spitzer/IRAC images and has since also been imaged at shorter wavelength (≤10 μm) laboratory tests of the MIRI detectors. The artifact is a result of internal reflective diffraction off the pixel-defining metallic contacts to the readout detector circuit. The low absorption in the arrays at the shorter wavelengths enables photons diffracted to wide angles to cross the detectors and substrates multiple times. This is related to similar behavior in other back illuminated solid-state detectors with poor absorption, such as conventional CCDs operating near 1 μm. We investigate the properties of the artifact and its dependence on the detector architecture with a quantum-electrodynamic (QED) model of the probabilities of various photon paths. Knowledge of the artifact properties will be especially important for observations with the MIRI LRS and MRS spectroscopic modes.
Journal Article
The James Webb Space Telescope
by
Mountain, Matt
,
Sonneborn, George
,
Gardner, Jonathan P.
in
Astronomy
,
Beryllium
,
Chemical properties
2006
Issue Title: The James Webb Space Telescope The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m. The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.[PUBLICATION ABSTRACT]
Journal Article
Cassiopeia A Supernova Was of Type IIb
2008
Cassiopeia A is the youngest supernova remnant known in the Milky Way and a unique laboratory for supernova physics. We present an optical spectrum of the Cassiopeia A supernova near maximum brightness, obtained from observations of a scattered light echo more than three centuries after the direct light of the explosion swept past Earth. The spectrum shows that Cassiopeia A was a type IIb supernova and originated from the collapse of the helium core of a red supergiant that had lost most of its hydrogen envelope before exploding. Our finding concludes a long-standing debate on the Cassiopeia A progenitor and provides new insight into supernova physics by linking the properties of the explosion to the wealth of knowledge about its remnant.
Journal Article
Large impacts around a solar-analog star in the era of terrestrial planet formation
2014
The final assembly of terrestrial planets occurs via massive collisions, which can launch copious clouds of dust that are warmed by the star and glow in the infrared. We report the real-time detection of a debris-producing impact in the terrestrial planet zone around a 35-million-year-old solar-analog star. We observed a substantial brightening of the debris disk at a wavelength of 3 to 5 micrometers, followed by a decay over a year, with quasi-periodic modulations of the disk flux. The behavior is consistent with the occurrence of a violent impact that produced vapor out of which a thick cloud of silicate spherules condensed that were then ground into dust by collisions. These results demonstrate how the time domain can become a new dimension for the study of terrestrial planet formation.
Journal Article
Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI
2023
Planetary debris disks around other stars are analogous to the asteroid and Kuiper belts in the Solar System. Their structure reveals the configuration of small bodies and provides hints for the presence of planets. The nearby star Fomalhaut hosts one of the most prominent debris disks, resolved by the Hubble Space Telescope, Spitzer, Herschel and the Atacama Large Millimeter Array. Images of this system at mid-infrared wavelengths using JWST/MIRI not only show the narrow Kuiper belt-analogue outer ring, but also that (1) what was thought from indirect evidence to be an asteroid-analogue structure is instead broad, extending outward into the outer system, and (2) there is an intermediate belt, probably shepherded by an unseen planet. The newly discovered belt is demarcated by an inner gap, located at ~78 au, and it is misaligned relative to the outer belt. The previously known collisionally generated dust cloud, Fomalhaut b, could have originated from this belt, suggesting increased dynamical stirring and collision rates there. We also discovered a large dust cloud within the outer ring, possible evidence of another dust-creating collision. Taken together with previous observations, Fomalhaut appears to be the site of a complex and possibly dynamically active planetary system.JWST mid-infrared images of the nearby star Fomalhaut reveal a complex system of dusty rings and disks, created as debris from planetesimal collisions. These structures suggest the presence of a complex and probably dynamically active planetary system.
Journal Article
Judith Pipher (1940–2022)
by
Rieke, George H.
,
McMurtry, Craig W.
,
Rieke, Marcia J.
in
639/33/34/2810
,
639/33/34/4117
,
Advisors
2022
Judith Pipher, who passed away on 21 February 2022, was a pioneer in the field of infrared astronomy and a role model, teacher, advisor and more.
Journal Article
Infrared Echoes near the Supernova Remnant Cassiopeia A
2005
Two images of Cassiopeia A obtained at 24 micrometers with the Spitzer Space Telescope over a 1-year time interval show moving structures outside the shell of the supernova remnant to a distance of more than 20 arc minutes. Individual features exhibit apparent motions of 10 to 20 arc seconds per year, independently confirmed by near-infrared observations. The observed tangential velocities are at roughly the speed of light. It is likely that the moving structures are infrared echoes, in which interstellar dust is heated by the explosion and by flares from the compact object near the center of the remnant.
Journal Article