Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
209 result(s) for "Rinn, John L"
Sort by:
Discovery and annotation of long noncoding RNAs
Recent advances in RNA-sequencing technologies have led to the discovery of thousands of previously unannotated noncoding transcripts, including many long noncoding RNAs (lncRNAs) whose functions remain largely unknown. Here, the authors discuss considerations and best practices when identifying and annotating lncRNAs that should aid their functional and mechanistic exploration. Recent advances in RNA-sequencing technologies have led to the discovery of thousands of previously unannotated noncoding transcripts, including many long noncoding RNAs (lncRNAs) whose functions remain largely unknown. Here we discuss considerations and best practices in lncRNA identification and annotation, which we hope will foster functional and mechanistic exploration.
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
An algorithm uncovers transcriptome dynamics during differentiation by ordering RNA-Seq data from single cells. Defining the transcriptional dynamics of a temporal process such as cell differentiation is challenging owing to the high variability in gene expression between individual cells. Time-series gene expression analyses of bulk cells have difficulty distinguishing early and late phases of a transcriptional cascade or identifying rare subpopulations of cells, and single-cell proteomic methods rely on a priori knowledge of key distinguishing markers 1 . Here we describe Monocle, an unsupervised algorithm that increases the temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points. Applied to the differentiation of primary human myoblasts, Monocle revealed switch-like changes in expression of key regulatory factors, sequential waves of gene regulation, and expression of regulators that were not known to act in differentiation. We validated some of these predicted regulators in a loss-of function screen. Monocle can in principle be used to recover single-cell gene expression kinetics from a wide array of cellular processes, including differentiation, proliferation and oncogenic transformation.
Non-coding RNAs as regulators of embryogenesis
Key Points Genome-wide transcriptome analyses have demonstrated that a large fraction of the genome is transcribed. Many newly identified transcripts do not to encode proteins but function as non-coding RNAs (ncRNAs). Both small ncRNAs (for example, microRNAs (miRNAs)) and large ncRNAs (for example, large intergenic ncRNAs (lincRNAs)) have emerged as important regulators of embryogenesis. Several ncRNAs promote developmental transitions and maintain developmental states. Mutations in the miRNA biogenesis pathway have revealed global requirements for miRNAs during embryogenesis. miRNAs sharpen and promote developmental transitions. For example, specific miRNAs accelerate the deadenylation and clearance of maternal mRNAs. miRNAs regulate cell fate specification by modulating various signalling pathways. miRNAs participate in bistable loops that stabilize alternative cell fate decisions. For example, let-7 and LIN28 establish a toggle switch between pluripotent and differentiated cell fates. Long ncRNAs (lncRNAs) establish stably maintained chromatin states during imprinting and dosage compensation. The mammalian lncRNA Xist , for example, is essential for silencing one of the two X chromosomes in mammalian females. lncRNAs can serve as scaffolds for the assembly of chromatin-modifying complexes and transcriptional regulators. For example, the lncRNA HOTAIR establishes a repressive chromatin state at multiple loci. lncRNAs and miRNAs have important roles in the gene regulatory networks that govern cell fate specification (for example, neural development and differentiation) and morphogenesis (for example, the epithelial-to-mesenchymal transition). MicroRNAs and long non-coding RNAs regulate diverse aspects of animal embryogenesis. Recent evidence from several species shows their importance in driving and maintaining cell fate decisions, from early patterning through to tissue specification and morphogenesis. Non-coding RNAs (ncRNAs) are emerging as key regulators of embryogenesis. They control embryonic gene expression by several means, ranging from microRNA-induced degradation of mRNAs to long ncRNA-mediated modification of chromatin. Many aspects of embryogenesis seem to be controlled by ncRNAs, including the maternal–zygotic transition, the maintenance of pluripotency, the patterning of the body axes, the specification and differentiation of cell types and the morphogenesis of organs. Drawing from several animal model systems, we describe two emerging themes for ncRNA function: promoting developmental transitions and maintaining developmental states. These examples also highlight the roles of ncRNAs in ensuring a robust commitment to one of two possible cell fates.
Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution
Long non-coding RNAs (lncRNAs) have been implicated in diverse biological processes. In contrast to extensive genomic annotation of lncRNA transcripts, far fewer have been characterized for subcellular localization and cell-to-cell variability. Addressing this requires systematic, direct visualization of lncRNAs in single cells at single-molecule resolution. We use single-molecule RNA-FISH to systematically quantify and categorize the subcellular localization patterns of a representative set of 61 lncRNAs in three different cell types. Our survey yields high-resolution quantification and stringent validation of the number and spatial positions of these lncRNA, with an mRNA set for comparison. Using this highly quantitative image-based dataset, we observe a variety of subcellular localization patterns, ranging from bright sub-nuclear foci to almost exclusively cytoplasmic localization. We also find that the low abundance of lncRNAs observed from cell population measurements cannot be explained by high expression in a small subset of 'jackpot' cells. Additionally, nuclear lncRNA foci dissolve during mitosis and become widely dispersed, suggesting these lncRNAs are not mitotic bookmarking factors. Moreover, we see that divergently transcribed lncRNAs do not always correlate with their cognate mRNA, nor do they have a characteristic localization pattern. Our systematic, high-resolution survey of lncRNA localization reveals aspects of lncRNAs that are similar to mRNAs, such as cell-to-cell variability, but also several distinct properties. These characteristics may correspond to particular functional roles. Our study also provides a quantitative description of lncRNAs at the single-cell level and a universally applicable framework for future study and validation of lncRNAs.
RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells
Many chromatin-binding proteins and protein complexes that regulate transcription also bind RNA. One of these, Polycomb repressive complex 2 (PRC2), deposits the H3K27me3 mark of facultative heterochromatin and is required for stem cell differentiation. PRC2 binds RNAs broadly in vivo and in vitro. Yet, the biological importance of this RNA binding remains unsettled. Here, we tackle this question in human induced pluripotent stem cells by using multiple complementary approaches. Perturbation of RNA–PRC2 interaction by RNase A, by a chemical inhibitor of transcription or by an RNA-binding-defective mutant all disrupted PRC2 chromatin occupancy and localization genome wide. The physiological relevance of PRC2–RNA interactions is further underscored by a cardiomyocyte differentiation defect upon genetic disruption. We conclude that PRC2 requires RNA binding for chromatin localization in human pluripotent stem cells and in turn for defining cellular state. Perturbation of RNA–PRC2 interaction in human pluripotent stem cells disrupts PRC2 chromatin occupancy and localization genome wide. PRC2–RNA interactions contribute to cardiomyocyte differentiation.
Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer
Mounting evidence suggests that long noncoding RNAs (lncRNAs) can function as microRNA sponges and compete for microRNA binding to protein-coding transcripts. However, the prevalence, functional significance and targets of lncRNA-mediated sponge regulation of cancer are mostly unknown. Here we identify a lncRNA-mediated sponge regulatory network that affects the expression of many protein-coding prostate cancer driver genes, by integrating analysis of sequence features and gene expression profiles of both lncRNAs and protein-coding genes in tumours. We confirm the tumour-suppressive function of two lncRNAs (TUG1 and CTB-89H12.4) and their regulation of PTEN expression in prostate cancer. Surprisingly, one of the two lncRNAs, TUG1, was previously known for its function in polycomb repressive complex 2 (PRC2)-mediated transcriptional regulation, suggesting its sub-cellular localization-dependent function. Our findings not only suggest an important role of lncRNA-mediated sponge regulation in cancer, but also underscore the critical influence of cytoplasmic localization on the efficacy of a sponge lncRNA. Long non-coding RNAs (lncRNA; >200 base pair nucleic acids with little protein-coding capacity) are emerging as potentially important regulators of oncogenesis. Here the authors show tumour suppressive lncRNA sponge function for the protein products of prostate cancer driver genes.
A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs
Human induced pluripotent stem cells show no consistent differences from human embryonic stem cells in a study that controls for several sources of variability. The equivalence of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) remains controversial. Here we use genetically matched hESC and hiPSC lines to assess the contribution of cellular origin (hESC vs. hiPSC), the Sendai virus (SeV) reprogramming method and genetic background to transcriptional and DNA methylation patterns while controlling for cell line clonality and sex. We find that transcriptional and epigenetic variation originating from genetic background dominates over variation due to cellular origin or SeV infection. Moreover, the 49 differentially expressed genes we detect between genetically matched hESCs and hiPSCs neither predict functional outcome nor distinguish an independently derived, larger set of unmatched hESC and hiPSC lines. We conclude that hESCs and hiPSCs are molecularly and functionally equivalent and cannot be distinguished by a consistent gene expression signature. Our data further imply that genetic background variation is a major confounding factor for transcriptional and epigenetic comparisons of pluripotent cell lines, explaining some of the previously observed differences between genetically unmatched hESCs and hiPSCs.
Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking
The spatial organization of RNA within cells is a crucial factor influencing a wide range of biological functions throughout all kingdoms of life. However, a general understanding of RNA localization has been hindered by a lack of simple, high-throughput methods for mapping the transcriptomes of subcellular compartments. Here, we develop such a method, termed APEX-RIP, which combines peroxidase-catalyzed, spatially restricted in situ protein biotinylation with RNA-protein chemical crosslinking. We demonstrate that, using a single protocol, APEX-RIP can isolate RNAs from a variety of subcellular compartments, including the mitochondrial matrix, nucleus, cytosol, and endoplasmic reticulum (ER), with specificity and sensitivity that rival or exceed those of conventional approaches. We further identify candidate RNAs localized to mitochondria-ER junctions and nuclear lamina, two compartments that are recalcitrant to classical biochemical purification. Since APEX-RIP is simple, versatile, and does not require special instrumentation, we envision its broad application in a variety of biological contexts.
The Sox2 transcription factor binds RNA
Certain transcription factors are proposed to form functional interactions with RNA to facilitate proper regulation of gene expression. Sox2, a transcription factor critical for maintenance of pluripotency and neurogenesis, has been found associated with several lncRNAs, although it is unknown whether these interactions are direct or via other proteins. Here we demonstrate that human Sox2 interacts directly with one of these lncRNAs with high affinity through its HMG DNA-binding domain in vitro. These interactions are primarily with double-stranded RNA in a non-sequence specific fashion, mediated by a similar but not identical interaction surface. We further determined that Sox2 directly binds RNA in mouse embryonic stem cells by UV-cross-linked immunoprecipitation of Sox2 and more than a thousand Sox2-RNA interactions in vivo were identified using fRIP-seq. Together, these data reveal that Sox2 employs a high-affinity/low-specificity paradigm for RNA binding in vitro and in vivo. Some transcription factors have been proposed to functionally interact with RNA to facilitate proper regulation of gene expression. Here the authors demonstrate that human Sox2 interact directly and with high affinity to RNAs through its HMG DNA-binding domain.
Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells
Alexander Meissner and colleagues use CRISPR/Cas9 genome editing to inactivate the DNA methyltransferases DNMT1 , DNMT3A and DNMT3B in human embryonic stem cells (ESCs). They find an essential role for DNMT1 in human ESCs and generate genome-wide maps of the DNA methylation changes that occur following inactivation of these enzymes. DNA methylation is a key epigenetic modification involved in regulating gene expression and maintaining genomic integrity. Here we inactivated all three catalytically active DNA methyltransferases (DNMTs) in human embryonic stem cells (ESCs) using CRISPR/Cas9 genome editing to further investigate the roles and genomic targets of these enzymes. Disruption of DNMT3A or DNMT3B individually as well as of both enzymes in tandem results in viable, pluripotent cell lines with distinct effects on the DNA methylation landscape, as assessed by whole-genome bisulfite sequencing. Surprisingly, in contrast to findings in mouse, deletion of DNMT1 resulted in rapid cell death in human ESCs. To overcome this immediate lethality, we generated a doxycycline-responsive tTA-DNMT1* rescue line and readily obtained homozygous DNMT1 -mutant lines. However, doxycycline-mediated repression of exogenous DNMT1 * initiates rapid, global loss of DNA methylation, followed by extensive cell death. Our data provide a comprehensive characterization of DNMT-mutant ESCs, including single-base genome-wide maps of the targets of these enzymes.