Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
43
result(s) for
"Ritelli, Marco"
Sort by:
Cellular and Molecular Mechanisms in the Pathogenesis of Classical, Vascular, and Hypermobile Ehlers‒Danlos Syndromes
2019
The Ehlers‒Danlos syndromes (EDS) constitute a heterogenous group of connective tissue disorders characterized by joint hypermobility, skin abnormalities, and vascular fragility. The latest nosology recognizes 13 types caused by pathogenic variants in genes encoding collagens and other molecules involved in collagen processing and extracellular matrix (ECM) biology. Classical (cEDS), vascular (vEDS), and hypermobile (hEDS) EDS are the most frequent types. cEDS and vEDS are caused respectively by defects in collagen V and collagen III, whereas the molecular basis of hEDS is unknown. For these disorders, the molecular pathology remains poorly studied. Herein, we review, expand, and compare our previous transcriptome and protein studies on dermal fibroblasts from cEDS, vEDS, and hEDS patients, offering insights and perspectives in their molecular mechanisms. These cells, though sharing a pathological ECM remodeling, show differences in the underlying pathomechanisms. In cEDS and vEDS fibroblasts, key processes such as collagen biosynthesis/processing, protein folding quality control, endoplasmic reticulum homeostasis, autophagy, and wound healing are perturbed. In hEDS cells, gene expression changes related to cell-matrix interactions, inflammatory/pain responses, and acquisition of an in vitro pro-inflammatory myofibroblast-like phenotype may contribute to the complex pathogenesis of the disorder. Finally, emerging findings from miRNA profiling of hEDS fibroblasts are discussed to add some novel biological aspects about hEDS etiopathogenesis.
Journal Article
Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome
2018
Vascular Ehlers-Danlos syndrome (vEDS) is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII), which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER) homeostasis, COLLs folding and extracellular matrix (ECM) organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition into the ECM of several structural proteins crucial to the integrity of soft connective tissues.
Journal Article
Molecular insights in the pathogenesis of classical Ehlers-Danlos syndrome from transcriptome-wide expression profiling of patients’ skin fibroblasts
2019
Classical Ehlers-Danlos syndrome (cEDS) is a dominant inherited connective tissue disorder mainly caused by mutations in the COL5A1 and COL5A2 genes encoding type V collagen (COLLV), which is a fibrillar COLL widely distributed in a variety of connective tissues. cEDS patients suffer from skin hyperextensibility, abnormal wound healing/atrophic scars, and joint hypermobility. Most of the causative variants result in a non-functional COL5A1 allele and COLLV haploinsufficiency, whilst COL5A2 mutations affect its structural integrity. To shed light into disease mechanisms involved in cEDS, we performed gene expression profiling in skin fibroblasts from four patients harboring haploinsufficient and structural mutations in both disease genes. Transcriptome profiling revealed significant changes in the expression levels of different extracellular matrix (ECM)-related genes, such as SPP1, POSTN, EDIL3, IGFBP2, and C3, which encode both matricellular and soluble proteins that are mainly involved in cell proliferation and migration, and cutaneous wound healing. These gene expression changes are consistent with our previous protein findings on in vitro fibroblasts from other cEDS patients, which exhibited reduced migration and poor wound repair owing to COLLV disorganization, altered deposition of fibronectin into ECM, and an abnormal integrin pattern. Microarray analysis also indicated the decreased expression of DNAJB7, VIPAS39, CCPG1, ATG10, SVIP, which encode molecular chaperones facilitating protein folding, enzymes regulating post-Golgi COLLs processing, and proteins acting as cargo receptors required for endoplasmic reticulum (ER) proteostasis and implicated in the autophagy process. Patients' cells also showed altered mRNA levels of many cell cycle regulating genes including CCNE2, KIF4A, MKI67, DTL, and DDIAS. Protein studies showed that aberrant COLLV expression causes the disassembly of itself and many structural ECM constituents including COLLI, COLLIII, fibronectin, and fibrillins. Our findings provide the first molecular evidence of significant gene expression changes in cEDS skin fibroblasts highlighting that defective ECM remodeling, ER homeostasis and autophagy might play a role in the pathogenesis of this connective tissue disorder.
Journal Article
Multisystemic manifestations in a cohort of 75 classical Ehlers-Danlos syndrome patients: natural history and nosological perspectives
2020
Background
The Ehlers-Danlos syndromes (EDS) are rare connective tissue disorders consisting of 13 subtypes with overlapping features including joint hypermobility, skin and generalized connective tissue fragility. Classical EDS (cEDS) is principally caused by heterozygous
COL5A1
or
COL5A2
variants and rarely by the
COL1A1
p.(Arg312Cys) substitution. Current major criteria are (1) skin hyperextensibility plus atrophic scars and (2) generalized joint hypermobility (gJHM). Minor criteria include additional mucocutaneous signs, epicanthal folds, gJHM complications, and an affected first-degree relative. Minimal criteria prompting molecular testing are major criterion 1 plus either major criterion 2 or 3 minor criteria. In addition to these features, the clinical picture also involves multiple organ systems, but large-scale cohort studies are still missing. This study aimed to investigate the multisystemic involvement and natural history of cEDS through a cross-sectional study on a cohort of 75 molecularly confirmed patients evaluated from 2010 to 2019 in a tertiary referral center. The diagnostic criteria, additional mucocutaneous, osteoarticular, musculoskeletal, cardiovascular, gastrointestinal, uro-gynecological, neuropsychiatric, and atopic issues, and facial/ocular features were ascertained, and feature rates compared by sex and age.
Results
Our study confirms that cEDS is mainly characterized by cutaneous and articular involvement, though none of their hallmarks was represented in all cases and suggests a milder multisystemic involvement and a more favorable natural history compared to other EDS subtypes. Abnormal scarring was the most frequent and characteristic sign, skin hyperextensibility and gJHM were less common, all without any sex and age bias; joint instability complications were more recurrent in adults. Some orthopedic features showed a high prevalence, whereas the other issues related to the investigated organ systems were less recurrent with few exceptions and age-related differences.
Conclusions
Our findings define the diagnostic relevance of cutaneous and articular features and additional clinical signs associated to cEDS. Furthermore, our data suggest an update of the current EDS nosology concerning scarring that should be considered separately from skin hyperextensibility and that the clinical diagnosis of cEDS may be enhanced by the accurate evaluation of orthopedic manifestations at all ages, faciocutaneous indicators in children, and some acquired traits related to joint instability complications, premature skin aging, and patterning of abnormal scarring in older individuals.
Journal Article
Transcriptome-Wide Expression Profiling in Skin Fibroblasts of Patients with Joint Hypermobility Syndrome/Ehlers-Danlos Syndrome Hypermobility Type
2016
Joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type (JHS/EDS-HT), is likely the most common systemic heritable connective tissue disorder, and is mostly recognized by generalized joint hypermobility, joint instability complications, minor skin changes and a wide range of satellite features. JHS/EDS-HT is considered an autosomal dominant trait but is still without a defined molecular basis. The absence of (a) causative gene(s) for JHS/EDS-HT is likely attributable to marked genetic heterogeneity and/or interaction of multiple loci. In order to help in deciphering such a complex molecular background, we carried out a comprehensive immunofluorescence analysis and gene expression profiling in cultured skin fibroblasts from five women affected with JHS/EDS-HT. Protein study revealed disarray of several matrix structural components such as fibrillins, tenascins, elastin, collagens, fibronectin, and their integrin receptors. Transcriptome analysis indicated perturbation of different signaling cascades that are required for homeostatic regulation either during development or in adult tissues as well as altered expression of several genes involved in maintenance of extracellular matrix architecture and homeostasis (e.g., SPON2, TGM2, MMP16, GPC4, SULF1), cell-cell adhesion (e.g., CDH2, CHD10, PCDH9, CLDN11, FLG, DSP), immune/inflammatory/pain responses (e.g., CFD, AQP9, COLEC12, KCNQ5, PRLR), and essential for redox balance (e.g., ADH1C, AKR1C2, AKR1C3, MAOB, GSTM5). Our findings provide a picture of the gene expression profile and dysregulated pathways in JHS/EDS-HT skin fibroblasts that correlate well with the systemic phenotype of the patients.
Journal Article
Expanding the clinical and mutational spectrum of B4GALT7-spondylodysplastic Ehlers-Danlos syndrome
2017
Background
Spondylodysplastic EDS (spEDS) is a rare connective tissue disorder that groups the phenotypes caused by biallelic
B4GALT7
,
B3GALT6,
and
SLC39A13
mutations. In the 2017 EDS nosology, minimal criteria (general and gene-specific) for a clinical suspicion of spEDS have been proposed, but molecular analysis is required to reach a definite diagnosis. The majority of spEDS patients presented with short stature, skin hyperextensibility, facial dysmorphisms, peculiar radiological findings, muscle hypotonia and joint laxity and/or its complications. To date only 7 patients with β4GALT7-deficiency (spEDS-
B4GALT7
) have been described and their clinical data suggested that, in addition to short stature and muscle hypotonia, radioulnar synostosis, hypermetropia, and delayed cognitive development might be a hallmark of this specific type of spEDS. Additional 22 patients affected with an overlapping phenotype, i.e., Larsen of Reunion Island syndrome, all carrying a homozygous
B4GALT7
mutation, are also recognized.
Results
Herein, we report on a 30-year-old Moroccan woman who fitted the minimal criteria to suspect spEDS, but lacked radioulnar synostosis and intellectual disability and presented with neurosensorial hearing loss and limb edema of lymphatic origin. Sanger sequencing of
B4GALT7
was performed since the evaluation of the spEDS gene-specific minor criteria suggested this specific subtype. Mutational screening revealed the homozygous c.829G>T, p.Glu277* pathogenetic variant leading to aberrant splicing.
Conclusions
Our findings expand both the clinical and mutational spectrum of this ultrarare connective tissue disorder. The comparison of the patient’s features with those of the other spEDS and Larsen of Reunion Island syndrome patients reported up to now offers future perspectives for spEDS nosology and clinical research in this field.
Journal Article
Further Defining the Phenotypic Spectrum of B3GAT3 Mutations and Literature Review on Linkeropathy Syndromes
by
Ritelli, Marco
,
Giacopuzzi, Edoardo
,
Chiarelli, Nicola
in
abnormal development
,
Adolescent
,
Antley-Bixler Syndrome Phenotype - genetics
2019
The term linkeropathies (LKs) refers to a group of rare heritable connective tissue disorders, characterized by a variable degree of short stature, skeletal dysplasia, joint laxity, cutaneous anomalies, dysmorphism, heart malformation, and developmental delay. The LK genes encode for enzymes that add glycosaminoglycan chains onto proteoglycans via a common tetrasaccharide linker region. Biallelic variants in XYLT1 and XYLT2, encoding xylosyltransferases, are associated with Desbuquois dysplasia type 2 and spondylo-ocular syndrome, respectively. Defects in B4GALT7 and B3GALT6, encoding galactosyltransferases, lead to spondylodysplastic Ehlers-Danlos syndrome (spEDS). Mutations in B3GAT3, encoding a glucuronyltransferase, were described in 25 patients from 12 families with variable phenotypes resembling Larsen, Antley-Bixler, Shprintzen-Goldberg, and Geroderma osteodysplastica syndromes. Herein, we report on a 13-year-old girl with a clinical presentation suggestive of spEDS, according to the 2017 EDS nosology, in whom compound heterozygosity for two B3GAT3 likely pathogenic variants was identified. We review the spectrum of B3GAT3-related disorders and provide a comparison of all LK patients reported up to now, highlighting that LKs are a phenotypic continuum bridging EDS and skeletal disorders, hence offering future nosologic perspectives.
Journal Article
Clinical and Molecular Characterization of Classical-Like Ehlers-Danlos Syndrome Due to a Novel TNXB Variant
2019
The Ehlers-Danlos syndromes (EDS) constitute a clinically and genetically heterogeneous group of connective tissue disorders. Tenascin X (TNX) deficiency is a rare type of EDS, defined as classical-like EDS (clEDS), since it phenotypically resembles the classical form of EDS, though lacking atrophic scarring. Although most patients display a well-defined phenotype, the diagnosis of TNX-deficiency is often delayed or overlooked. Here, we described an additional patient with clEDS due to a homozygous null-mutation in the TNXB gene. A review of the literature was performed, summarizing the most important and distinctive clinical signs of this disorder. Characterization of the cellular phenotype demonstrated a distinct organization of the extracellular matrix (ECM), whereby clEDS distinguishes itself from most other EDS subtypes by normal deposition of fibronectin in the ECM and a normal organization of the α5β1 integrin.
Journal Article
Matrix Metalloproteinases Inhibition by Doxycycline Rescues Extracellular Matrix Organization and Partly Reverts Myofibroblast Differentiation in Hypermobile Ehlers-Danlos Syndrome Dermal Fibroblasts: A Potential Therapeutic Target?
by
Zoppi, Nicoletta
,
Capitanio, Daniele
,
Colombi, Marina
in
Biomarkers
,
Cell culture
,
Cell Differentiation - drug effects
2021
Hypermobile Ehlers-Danlos syndrome (hEDS) is the most frequent type of EDS and is characterized by generalized joint hypermobility and musculoskeletal manifestations which are associated with chronic pain, and mild skin involvement along with the presence of more than a few comorbid conditions. Despite numerous research efforts, no causative gene(s) or validated biomarkers have been identified and insights into the disease-causing mechanisms remain scarce. Variability in the spectrum and severity of symptoms and progression of hEDS patients’ phenotype likely depend on a combination of age, gender, lifestyle, and the probable multitude of genes involved in hEDS. However, considering the clinical overlap with other EDS forms, which lead to abnormalities in extracellular matrix (ECM), it is plausible that the mechanisms underlying hEDS pathogenesis also affect the ECM to a certain extent. Herein, we performed a series of in vitro studies on the secretome of hEDS dermal fibroblasts that revealed a matrix metalloproteinases (MMPs) dysfunction as one of the major disease drivers by causing a detrimental feedback loop of excessive ECM degradation coupled with myofibroblast differentiation. We demonstrated that doxycycline-mediated inhibition of MMPs rescues in hEDS cells a control-like ECM organization and induces a partial reversal of their myofibroblast-like features, thus offering encouraging clues for translational studies confirming MMPs as a potential therapeutic target in hEDS with the expectation to improve patients’ quality of life and alleviate their disabilities.
Journal Article
RNA-Seq of Dermal Fibroblasts from Patients with Hypermobile Ehlers–Danlos Syndrome and Hypermobility Spectrum Disorders Supports Their Categorization as a Single Entity with Involvement of Extracellular Matrix Degrading and Proinflammatory Pathomechanisms
2022
Hypermobile Ehlers–Danlos syndrome (hEDS) and hypermobility spectrum disorders (HSD) are clinically overlapping connective tissue disorders of unknown etiology and without any validated diagnostic biomarker and specific therapies. Herein, we in-depth characterized the cellular phenotype and gene expression profile of hEDS and HSD dermal fibroblasts by immunofluorescence, amplicon-based RNA-seq, and qPCR. We demonstrated that both cell types show a common cellular trait, i.e., generalized extracellular matrix (ECM) disarray, myofibroblast differentiation, and dysregulated gene expression. Functional enrichment and pathway analyses clustered gene expression changes in different biological networks that are likely relevant for the disease pathophysiology. Specifically, the complex gene expression dysregulation (mainly involving growth factors, structural ECM components, ECM-modifying enzymes, cytoskeletal proteins, and different signal transducers), is expected to perturb many ECM-related processes including cell adhesion, migration, proliferation, and differentiation. Based on these findings, we propose a disease model in which an unbalanced ECM remodeling triggers a vicious cycle with a synergistic contribution of ECM degradation products and proinflammatory mediators leading to a functional impairment of different connective tissues reflecting the multisystemic presentation of hEDS/HSD patients. Our results offer many promising clues for translational research aimed to define molecular bases, diagnostic biomarkers, and specific therapies for these challenging connective tissue disorders.
Journal Article