Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Ritz, Nathaniel L."
Sort by:
Sulfur Cycling and the Intestinal Microbiome
In this review, we focus on the activities transpiring in the anaerobic segment of the sulfur cycle occurring in the gut environment where hydrogen sulfide is produced. While sulfate-reducing bacteria are considered as the principal agents for hydrogen sulfide production, the enzymatic desulfhydration of cysteine by heterotrophic bacteria also contributes to production of hydrogen sulfide. For sulfate-reducing bacteria respiration, molecular hydrogen and lactate are suitable as electron donors while sulfate functions as the terminal electron acceptor. Dietary components provide fiber and macromolecules that are degraded by bacterial enzymes to monomers, and these are fermented by intestinal bacteria with the production to molecular hydrogen which promotes the metabolic dominance by sulfate-reducing bacteria. Sulfate is also required by the sulfate-reducing bacteria, and this can be supplied by sulfate- and sulfonate-containing compounds that are hydrolyzed by intestinal bacterial with the release of sulfate. While hydrogen sulfide in the intestinal biosystem may be beneficial to bacteria by increasing resistance to antibiotics, and protecting them from reactive oxygen species, hydrogen sulfide at elevated concentrations may become toxic to the host.
The gut microbiome in social anxiety disorder: evidence of altered composition and function
The microbiome-gut-brain axis plays a role in anxiety, the stress response and social development, and is of growing interest in neuropsychiatric conditions. The gut microbiota shows compositional alterations in a variety of psychiatric disorders including depression, generalised anxiety disorder (GAD), autism spectrum disorder (ASD) and schizophrenia but studies investigating the gut microbiome in social anxiety disorder (SAD) are very limited. Using whole-genome shotgun analysis of 49 faecal samples (31 cases and 18 sex- and age-matched controls), we analysed compositional and functional differences in the gut microbiome of patients with SAD in comparison to healthy controls. Overall microbiota composition, as measured by beta-diversity, was found to be different between the SAD and control groups and several taxonomic differences were seen at a genus- and species-level. The relative abundance of the genera Anaeromassillibacillus and Gordonibacter were elevated in SAD, while Parasuterella was enriched in healthy controls. At a species-level, Anaeromassilibacillus sp An250 was found to be more abundant in SAD patients while Parasutterella excrementihominis was higher in controls. No differences were seen in alpha diversity. In relation to functional differences, the gut metabolic module ‘aspartate degradation I’ was elevated in SAD patients. In conclusion, the gut microbiome of patients with SAD differs in composition and function to that of healthy controls. Larger, longitudinal studies are warranted to validate these preliminary results and explore the clinical implications of these microbiome changes.
Intestinal Alkaline Phosphatase Exerts Anti-Inflammatory Effects Against Lipopolysaccharide by Inducing Autophagy
Intestinal alkaline phosphatase (IAP) regulates bicarbonate secretion, detoxifies lipopolysaccharide (LPS), regulates gut microbes, and dephosphorylates proinflammatory nucleotides. IAP also exhibits anti-inflammatory effects in a Toll-like Receptor-4 (TLR-4) dependent manner. However, it is not known whether IAP induces autophagy. We tested the hypothesis that IAP may induce autophagy which may mediate the anti-inflammatory effects of IAP. We found that exogenous IAP induced autophagy in intestinal epithelial cells and in macrophages. TLR4INC34 (C34), a TLR4 signaling inhibitor, suppressed IAP-induced autophagy. IAP also inhibited LPS-induced IL-1β mRNA expression and activation of NF-κB. When autophagy was blocked by 3-methyladenine (3MA) or by Atg5 siRNA, IAP failed to block LPS-mediated effects. IAP also upregulated autophagy-related gene expression in small intestine in mice. We administered either vehicle or IAP (100 U/ml) in drinking water for 14 days in C57BL/6 mice. Mice were sacrificed and ileal tissues collected. Increased expression of Atg5 , Atg16 , Irgm1 ,  Tlr4 , and Lyz genes was observed in the IAP treated group compared to the vehicle treated group. Increase in Atg16 protein expression and fluorescence intensity of LC3 was also observed in IAP-treated tissues compared to the vehicle-treated tissues. Thus, our study lays the framework for investigating how IAP and autophagy may act together to control inflammatory conditions.
Transplanting Fecal Virus-Like Particles Reduces High-Fat Diet-Induced Small Intestinal Bacterial Overgrowth in Mice
Fecal microbiota transplantation (FMT) is an effective tool for treating infection in the setting of dysbiosis of the intestinal microbiome. FMT for other forms of human disorders linked to dysbiosis have been less effective. The fecal microbiota contains a high density of virus-like particles (VLP), up to 90% of which are bacteriophages, thought to have a role in regulating gut bacterial populations. We hypothesized that transplantation of the phage-containing fecal VLP fraction may reduce bacterial density in the dysbiotic setting of small intestinal bacterial overgrowth (SIBO). In an experiment using fecal transplantation, we compared the effect of the fecal VLP fraction (bacteria removed) against \"Whole\" FMT (bacteria intact) on the ileal microbiome. Recipients were either treated with a 30-day high-fat diet (HFD) as a model of dysbiosis to induce SIBO or were on a standard diet (SD). We observed that transplantation of fecal VLPs from donors on a HFD was sufficient to alter the ileal microbiota, but the effect was dependent on diet of the recipient. In recipients on a HFD, ileal bacterial density was reduced. In recipients on a SD, the ileal microbiome transitioned toward the composition associated with a HFD. In both recipient groups, transplantation of fecal VLP fraction alone produced the same outcome as whole FMT. Neither treatment altered expression of antimicrobial peptides. These findings demonstrated a potential role of VLPs, likely phages, for modifying the gut microbiome during dysbiosis.
The gut virome is associated with stress-induced changes in behaviour and immune responses in mice
The microbiota–gut–brain axis has been shown to play an important role in the stress response, but previous work has focused primarily on the role of the bacteriome. The gut virome constitutes a major portion of the microbiome, with bacteriophages having the potential to remodel bacteriome structure and activity. Here we use a mouse model of chronic social stress, and employ 16S rRNA and whole metagenomic sequencing on faecal pellets to determine how the virome is modulated by and contributes to the effects of stress. We found that chronic stress led to behavioural, immune and bacteriome alterations in mice that were associated with changes in the bacteriophage class Caudoviricetes and unassigned viral taxa. To determine whether these changes were causally related to stress-associated behavioural or physiological outcomes, we conducted a faecal virome transplant from mice before stress and autochthonously transferred it to mice undergoing chronic social stress. The transfer of the faecal virome protected against stress-associated behaviour sequelae and restored stress-induced changes in select circulating immune cell populations, cytokine release, bacteriome alterations and gene expression in the amygdala. These data provide evidence that the virome plays a role in the modulation of the microbiota–gut–brain axis during stress, indicating that these viral populations should be considered when designing future microbiome-directed therapies. The gut virome is altered in a mouse model of chronic stress and is associated with changes in behavioural and immune response, which can be restored using faecal virome transfer.
Bismuth(III) interactions with Desulfovibrio desulfuricans: inhibition of cell energetics and nanocrystal formation of Bi2S3 and Bi0
Sulfate-reducing bacteria have been suggested to have an etiological role in the development of inflammatory bowel diseases and ulcerative colitis in humans. Traditionally. bismuth compounds have been administered to alleviate gastrointestinal discomfort and disease symptoms. One mechanism by which this treatment occurs is through binding bacterial derived hydrogen sulfide in the intestines. With the addition of bismuth-deferiprone, bismuth-citrate and bismuth subsalicylate to reactions containing cells of D. desulfuricans ATCC 27774, the oxidation of H2 with sulfate as the electron acceptor was inhibited but H2 oxidation with nitrate, nitrite and sulfite was not reduced. Our research suggests that a target for bismuth inhibition of D. desulfuricans is the F1 subunit of the ATP synthase and, thus, dissimilatory sulfate reduction does not occur. At sublethal concentrations, bismuth as Bi(III) is precipitated by hydrogen sulfide produced from respiratory sulfate reduction by D. desulfuricans. Nanocrystals of bismuth sulfide were determined to be Bi2S3 through the use of high resolution transmission electron microscopy imaging with X-ray energy-dispersive spectroscopy analysis. In the absence of sulfate, D. desulfuricans oxidizes H2 with the reduction of Bi(III) to Bi0 and this was also established by X-ray energy-dispersive spectroscopy analysis.
Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774
Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1 H )-pyridone. Growth of D. desulfuricans was inhibited by 10 μM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of β-thalassemia.
Microbiota from young mice counteracts selective age-associated behavioral deficits
The gut microbiota is increasingly recognized as an important regulator of host immunity and brain health. The aging process yields dramatic alterations in the microbiota, which is linked to poorer health and frailty in elderly populations. However, there is limited evidence for a mechanistic role of the gut microbiota in brain health and neuroimmunity during aging processes. Therefore, we conducted fecal microbiota transplantation from either young (3-4 months) or old (19-20 months) donor mice into aged recipient mice (19-20 months). Transplant of a microbiota from young donors reversed aging-associated differences in peripheral and brain immunity, as well as the hippocampal metabolome and transcriptome of aging recipient mice. Finally, the young donor-derived microbiota attenuated selective age-associated impairments in cognitive behavior when transplanted into an aged host. Our results reveal that the microbiome may be a suitable therapeutic target to promote healthy aging.
Creation of an unexpected plane of enhanced covalency in cerium(III) and berkelium(III) terpyridyl complexes
Controlling the properties of heavy element complexes, such as those containing berkelium, is challenging because relativistic effects, spin-orbit and ligand-field splitting, and complex metal-ligand bonding, all dictate the final electronic states of the molecules. While the first two of these are currently beyond experimental control, covalent M‒L interactions could theoretically be boosted through the employment of chelators with large polarizabilities that substantially shift the electron density in the molecules. This theory is tested by ligating Bk III with 4’-(4-nitrophenyl)-2,2’:6’,2”-terpyridine (terpy*), a ligand with a large dipole. The resultant complex, Bk(terpy*)(NO 3 ) 3 (H 2 O)·THF, is benchmarked with its closest electrochemical analog, Ce(terpy*)(NO 3 ) 3 (H 2 O)·THF. Here, we show that enhanced Bk‒N interactions with terpy* are observed as predicted. Unexpectedly, induced polarization by terpy* also creates a plane in the molecules wherein the M‒L bonds trans to terpy* are shorter than anticipated. Moreover, these molecules are highly anisotropic and rhombic EPR spectra for the Ce III complex are reported. Studying how the ligand design influences the bonding of f-block complexes is crucial to control their properties. Here, the authors report the preparation of Bk(III) and Ce(III) complexes featuring a terpyridyl ligand; structural, spectroscopic, electrochemical, and theoretical analysis reveal that the ligand induces unusual bonding by creating a plane of enhanced bond covalency.
Hydrogen Availability Is Dependent on the Actions of Both Hydrogen-Producing and Hydrogen-Consuming Microbes
Hydrogen gas (H2) is produced by H2-producing microbes in the gut during polysaccharide fermentation. Gut microbiome also includes H2-consuming microbes utilizing H2 for metabolism: methanogens producing methane, CH4, and sulfate-reducing bacteria producing hydrogen sulfide, H2S. H2S is not measured in the evaluation of gaseous byproducts of microbial fermentation. We hypothesize that the availability of measured H2 depends on both hydrogen producers and hydrogen consumers by measuring H2 in vitro and in vivo. In the in vitro study, groups were Bacteroides thetaiotaomicron (B. theta, H2 producers), Desulfovibrio vulgaris (D. vulgaris, H2 consumers), and D. vulgaris + B. theta combined. Gas samples were collected at 2 h and 24 h after incubation and assayed for H2, CH4, and H2S. In the in vivo study Sprague–Dawley rats were gavaged with suspended bacteria in four groups: B. theta, D. vulgaris, combined, and control. Gas was analyzed for H2 at 60 min. In the in vitro experiment, H2 concentration was higher in the combined group (188 ± 93.3 ppm) compared with D. vulgaris (27.17 ± 9.6 ppm) and B. theta groups (34.2 ± 29.8 ppm; P < 0.05); H2S concentration was statistically higher in the combined group (10.32 ± 1.5 ppm) compared with B. theta (0.19 ± 0.03 ppm) and D. vulgaris group (3.46 ± 0.28 ppm; P < 0.05). In the in vivo study, H2 concentrations were significantly higher in the B. theta group (44.3 ± 6.0 ppm) compared with control (31.8 ± 4.3) and the combined group (34.2 ± 8.7, P < 0.05). This study shows that sulfate-reducing bacteria could convert available H2 to H2S, leading to measured hydrogen levels that are dependent on the actions of both H2 producers and H2 consumers.