Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
76 result(s) for "Riutort, Marta"
Sort by:
Evolutionary Analysis of Mitogenomes from Parasitic and Free-Living Flatworms
Mitochondrial genomes (mitogenomes) are useful and relatively accessible sources of molecular data to explore and understand the evolutionary history and relationships of eukaryotic organisms across diverse taxonomic levels. The availability of complete mitogenomes from Platyhelminthes is limited; of the 40 or so published most are from parasitic flatworms (Neodermata). Here, we present the mitogenomes of two free-living flatworms (Tricladida): the complete genome of the freshwater species Crenobia alpina (Planariidae) and a nearly complete genome of the land planarian Obama sp. (Geoplanidae). Moreover, we have reanotated the published mitogenome of the species Dugesia japonica (Dugesiidae). This contribution almost doubles the total number of mtDNAs published for Tricladida, a species-rich group including model organisms and economically important invasive species. We took the opportunity to conduct comparative mitogenomic analyses between available free-living and selected parasitic flatworms in order to gain insights into the putative effect of life cycle on nucleotide composition through mutation and natural selection. Unexpectedly, we did not find any molecular hallmark of a selective relaxation in mitogenomes of parasitic flatworms; on the contrary, three out of the four studied free-living triclad mitogenomes exhibit higher A+T content and selective relaxation levels. Additionally, we provide new and valuable molecular data to develop markers for future phylogenetic studies on planariids and geoplanids.
Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes
Resolving the relationships among animal phyla is a key biological problem that remains to be solved. Morphology is unable to determine the relationships among most phyla and although molecular data have unveiled a new evolutionary scenario, they have their own limitations. Nuclear ribosomal genes (18S and 28S rDNA) have been used effectively for many years. However, they are considered of limited use for resolving deep divergences such as the origin of the bilaterians, due to certain drawbacks such as the long-branch attraction (LBA) problem. Here, we attempt to overcome these pitfalls by combining several methods suggested in previous studies and routinely used in contemporary standard phylogenetic analyses but that have not yet been applied to any bilaterian phylogeny based on these genes. The methods used include maximum likelihood and Bayesian inference, the application of models with rate heterogeneity across sites, wide taxon sampling and compartmentalized analyses for each problematic clade. The results obtained show that the combination of the above-mentioned methodologies minimizes the LBA effect, and a new Lophotrochozoa phylogeny emerges. Also, the Acoela and Nemertodermatida are confirmed with maximum support as the first branching bilaterians. Ribosomal RNA genes are thus a reliable source for the study of deep divergences in the metazoan tree, provided that the data are treated carefully.
Outstanding intraindividual genetic diversity in fissiparous planarians (Dugesia, Platyhelminthes) with facultative sex
Background Predicted genetic consequences of asexuality include high intraindividual genetic diversity (i.e., the Meselson effect) and accumulation of deleterious mutations (i.e., Muller’s Ratchet), among others. These consequences have been largely studied in parthenogenetic organisms, but studies on fissiparous species are scarce. Differing from parthenogens, fissiparous organisms inherit part of the soma of the progenitor, including somatic mutations. Thus, in the long term, fissiparous reproduction may also result in genetic mosaicism, besides the presence of the Meselson effect and Muller’s Ratchet. Dugesiidae planarians show outstanding regeneration capabilities, allowing them to naturally reproduce by fission, either strictly or combined with sex (facultative). Therefore, they are an ideal model to analyze the genetic footprint of fissiparous reproduction, both when it is alternated with sex and when it is the only mode of reproduction. Results In the present study, we generate and analyze intraindividual cloned data of a nuclear and a mitochondrial gene of sexual, fissiparous and facultative wild populations of the species Dugesia subtentaculata . We find that most individuals, independently of their reproductive strategy, are mosaics. However, the intraindividual haplotype and nucleotide diversity of fissiparous and facultative individuals is significantly higher than in sexual individuals, with no signs of Muller’s Ratchet. Finally, we also find that this high intraindividual genetic diversity of fissiparous and facultative individuals is composed by different combinations of ancestral and derived haplotypes of the species. Conclusions The intraindividual analyses of genetic diversity point out that fissiparous reproduction leaves a very special genetic footprint in individuals, characterized by mosaicism combined with the Meselson effect (named in the present study as the mosaic Meselson effect ). Interestingly, the different intraindividual combinations of ancestral and derivate genetic diversity indicate that haplotypes generated during periods of fissiparous reproduction can be also transmitted to the progeny through sexual events, resulting in offspring showing a wide range of genetic diversity and putatively allowing purifying selection to act at both intraindividual and individual level. Further investigations, using Dugesia planarians as model organisms, would be of great value to delve into this new model of genetic evolution by the combination of fission and sex.
Acoel Flatworms Are Not Platyhelminthes: Evidence from Phylogenomics
Acoel flatworms are small marine worms traditionally considered to belong to the phylum Platyhelminthes. However, molecular phylogenetic analyses suggest that acoels are not members of Platyhelminthes, but are rather extant members of the earliest diverging Bilateria. This result has been called into question, under suspicions of a long branch attraction (LBA) artefact. Here we re-examine this problem through a phylogenomic approach using 68 different protein-coding genes from the acoel Convoluta pulchra and 51 metazoan species belonging to 15 different phyla. We employ a mixture model, named CAT, previously found to overcome LBA artefacts where classical models fail. Our results unequivocally show that acoels are not part of the classically defined Platyhelminthes, making the latter polyphyletic. Moreover, they indicate a deuterostome affinity for acoels, potentially as a sister group to all deuterostomes, to Xenoturbellida, to Ambulacraria, or even to chordates. However, the weak support found for most deuterostome nodes, together with the very fast evolutionary rate of the acoel Convoluta pulchra, call for more data from slowly evolving acoels (or from its sister-group, the Nemertodermatida) to solve this challenging phylogenetic problem.
A new species of alien terrestrial planarian in Spain: Caenoplana decolorata
Terrestrial planarians found in a plant nursery in Spain in 2012 are described as a new species, Caenoplana decolorata . Dorsally they are mahogany brown with a cream median line. Ventrally they are pastel turquoise fading to brown laterally. Molecular data indicate that they are a member of the genus Caenoplana , but that they differ from other Caenoplana species found in Europe. One mature specimen has been partially sectioned, and the musculature and copulatory apparatus is described, confirming the generic placement but distinguishing the species from other members of the genus. It is probable that the species originates from Australia.
Treasure island: DNA data reveals unknown diversity in Cuban freshwater planarians (Platyhelminthes: Tricladida)
ABSTRACT Freshwater planarians constitute an important component in aquatic ecosystems as predators. They are, nonetheless, delicate animals used as indicators of water quality. This group has been little studied in The Antilles, where only seven species of Girardia Ball, 1974 have been reported. Those records date from the last two centuries and were identified based on morphology, leaving several specimens unidentified. Furthermore, the anatomical similarities among species and the lack of the copulatory apparatus in fissiparous populations make it necessary to use molecular data to perform accurate species delimitations and phylogenetic studies. The Cuban archipelago is the reservoir of the highest species diversity in the Caribbean. However, only one species of freshwater triclad has been described, Girardia cubana (Codreanu & Balcesco, 1973), which is endemic to Cuba. Recent samplings in the western part of the island molecularly identified Girardia sinensis Chen & Wang, 2015. At present, we are performing broad samplings all around Cuba. As a first result, we here present a phylogeny-based identification of freshwater planarians, collected in four localities of eastern Cuba, inferred using nuclear and mitochondrial markers. The presence of G. sinensis in the eastern part of the island is reported and two other lineages of the genus are identified, at least one could be a new species. Moreover, we found a lineage belonging to Cavernicola, of which there are no previous records in The Antilles. These findings support that the planarian richness of Cuba has been underestimated and new species could be described, providing relevant biogeographic information about the group in the Caribbean.
Diet assessment of two land planarian species using high-throughput sequencing data
Geoplanidae (Platyhelminthes: Tricladida) feed on soil invertebrates. Observations of their predatory behavior in nature are scarce, and most of the information has been obtained from food preference experiments. Although these experiments are based on a wide variety of prey, this catalog is often far from being representative of the fauna present in the natural habitat of planarians. As some geoplanid species have recently become invasive, obtaining accurate knowledge about their feeding habits is crucial for the development of plans to control and prevent their expansion. Using high throughput sequencing data, we perform a metagenomic analysis to identify the in situ diet of two endemic and codistributed species of geoplanids from the Brazilian Atlantic Forest: Imbira marcusi and Cephaloflexa bergi . We have tested four different methods of taxonomic assignment and find that phylogenetic-based assignment methods outperform those based on similarity. The results show that the diet of I. marcusi is restricted to earthworms, whereas C. bergi preys on spiders, harvestmen, woodlice, grasshoppers, Hymenoptera, Lepidoptera and possibly other geoplanids. Furthermore, both species change their feeding habits among the different sample locations. In conclusion, the integration of metagenomics with phylogenetics should be considered when establishing studies on the feeding habits of invertebrates.
Diversity of introduced terrestrial flatworms in the Iberian Peninsula: a cautionary tale
Many tropical terrestrial planarians (Platyhelminthes, Geoplanidae) have been introduced around the globe. One of these species is known to cause significant decline in earthworm populations, resulting in a reduction of ecological functions that earthworms provide. Flatworms, additionally, are a potential risk to other species that have the same dietary needs. Hence, the planarian invasion might cause significant economic losses in agriculture and damage to the ecosystem. In the Iberian Peninsula only Bipalium kewense Moseley, 1878 had been cited till 2007. From that year on, four more species have been cited, and several reports of the presence of these animals in particular gardens have been received. In the present study we have: (1) analyzed the animals sent by non-specialists and also the presence of terrestrial planarians in plant nurseries and garden centers; (2) identified their species through morphological and phylogenetic molecular analyses, including representatives of their areas of origin; (3) revised their dietary sources and (4) used Species Distribution Modeling (SDM) for one species to evaluate the risk of its introduction to natural areas. The results have shown the presence of at least ten species of alien terrestrial planarians, from all its phylogenetic range. International plant trade is the source of these animals, and many garden centers are acting as reservoirs. Also, landscape restoration to reintroduce autochthonous plants has facilitated their introduction close to natural forests and agricultural fields. In conclusion, there is a need to take measures on plant trade and to have special care in the treatment of restored habitats.
Birds of a feather flock together: a dataset for Clock and Adcyap1 genes from migration genetics studies
Birds in seasonal habitats rely on intricate strategies for optimal timing of migrations. This is governed by environmental cues, including photoperiod. Genetic factors affecting intrinsic timekeeping mechanisms, such as circadian clock genes, have been explored, yielding inconsistent findings with potential lineage-dependency. To clarify this evidence, a systematic review and phylogenetic reanalysis was done. This descriptor outlines the methodology for sourcing, screening, and processing relevant literature and data. PRISMA guidelines were followed, ultimately including 66 studies, with 34 focusing on candidate genes at the genotype-phenotype interface. Studies were clustered using bibliographic coupling and citation network analysis, alongside scientometric analyses by publication year and location. Data was retrieved for allele data from databases, article supplements, and direct author communications. The dataset, version 1.0.2, encompasses data from 52 species, with 46 species for the Clock gene and 43 for the Adcyap1 gene. This dataset, featuring data from over 8000 birds, constitutes the most extensive cross-species collection for these candidate genes, used in studies investigating gene polymorphisms and seasonal bird migration.
Schmidtea mediterranea phylogeography: an old species surviving on a few Mediterranean islands?
Schmidtea mediterranea (Platyhelminthes, Tricladida, Continenticola) is found in scattered localities on a few islands and in coastal areas of the western Mediterranean. Although S. mediterranea is the object of many regeneration studies, little is known about its evolutionary history. Its present distribution has been proposed to stem from the fragmentation and migration of the Corsica-Sardinia microplate during the formation of the western Mediterranean basin, which implies an ancient origin for the species. To test this hypothesis, we obtained a large number of samples from across its distribution area. Using known and new molecular markers and, for the first time in planarians, a molecular clock, we analysed the genetic variability and demographic parameters within the species and between its sexual and asexual populations to estimate when they diverged. A total of 2 kb from three markers (COI, CYB and a nuclear intron N13) was amplified from ~200 specimens. Molecular data clustered the studied populations into three groups that correspond to the west, central and southeastern geographical locations of the current distribution of S. mediterranea. Mitochondrial genes show low haplotype and nucleotide diversity within populations but demonstrate higher values when all individuals are considered. The nuclear marker shows higher values of genetic diversity than the mitochondrial genes at the population level, but asexual populations present lower variability than the sexual ones. Neutrality tests are significant for some populations. Phylogenetic and dating analyses show the three groups to be monophyletic, with the west group being the basal group. The time when the diversification of the species occurred is between ~20 and ~4 mya, although the asexual nature of the western populations could have affected the dating analyses. S. mediterranea is an old species that is sparsely distributed in a harsh habitat, which is probably the consequence of the migration of the Corsica-Sardinia block. This species probably adapted to temperate climates in the middle of a changing Mediterranean climate that eventually became dry and hot. These data also suggest that in the mainland localities of Europe and Africa, sexual individuals of S. mediterranea are being replaced by asexual individuals that are either conspecific or are from other species that are better adapted to the Mediterranean climate.