Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
24
result(s) for
"Rivas, Ioar"
Sort by:
Exposure to road traffic noise and cognitive development in schoolchildren in Barcelona, Spain: A population-based cohort study
by
Sunyer, Jordi
,
Persavento, Cecilia
,
López-Vicente, Mónica
in
Achievement tests
,
Air pollution
,
Aircraft
2022
Road traffic noise is a prevalent and known health hazard. However, little is known yet about its effect on children's cognition. We aimed to study the association between exposure to road traffic noise and the development of working memory and attention in primary school children, considering school-outdoor and school-indoor annual average noise levels and noise fluctuation characteristics, as well as home-outdoor noise exposure.
We followed up a population-based sample of 2,680 children aged 7 to 10 years from 38 schools in Barcelona (Catalonia, Spain) between January 2012 to March 2013. Children underwent computerised cognitive tests 4 times (n = 10,112), for working memory (2-back task, detectability), complex working memory (3-back task, detectability), and inattentiveness (Attention Network Task, hit reaction time standard error, in milliseconds). Road traffic noise was measured indoors and outdoors at schools, at the start of the school year, using standard protocols to obtain A-weighted equivalent sound pressure levels, i.e., annual average levels scaled to human hearing, for the daytime (daytime LAeq, in dB). We also derived fluctuation indicators out of the measurements (noise intermittency ratio, %; and number of noise events) and obtained individual estimated indoor noise levels (LAeq) correcting for classroom orientation and classroom change between years. Home-outdoor noise exposure at home (Lden, i.e., EU indicator for the 24-hour annual average levels) was estimated using Barcelona's noise map for year 2012, according to the European Noise Directive (2002). We used linear mixed models to evaluate the association between exposure to noise and cognitive development adjusting for age, sex, maternal education, socioeconomical vulnerability index at home, indoor or outdoor traffic-related air pollution (TRAP) for corresponding school models or outdoor nitrogen dioxide (NO2) for home models. Child and school were included as nested random effects. The median age (percentile 25, percentile 75) of children in visit 1 was 8.5 (7.8; 9.3) years, 49.9% were girls, and 50% of the schools were public. School-outdoor exposure to road traffic noise was associated with a slower development in working memory (2-back and 3-back) and greater inattentiveness over 1 year in children, both for the average noise level (e.g., ‒4.83 points [95% CI: ‒7.21, ‒2.45], p-value < 0.001, in 2-back detectability per 5 dB in street levels) and noise fluctuation (e.g., ‒4.38 [‒7.08, ‒1.67], p-value = 0.002, per 50 noise events at street level). Individual exposure to the road traffic average noise level in classrooms was only associated with inattentiveness (2.49 ms [0, 4.81], p-value = 0.050, per 5 dB), whereas indoor noise fluctuation was consistently associated with all outcomes. Home-outdoor noise exposure was not associated with the outcomes. Study limitations include a potential lack of generalizability (58% of mothers with university degree in our study versus 50% in the region) and the lack of past noise exposure assessment.
We observed that exposure to road traffic noise at school, but not at home, was associated with slower development of working memory, complex working memory, and attention in schoolchildren over 1 year. Associations with noise fluctuation indicators were more evident than with average noise levels in classrooms.
Journal Article
Green spaces and cognitive development in primary schoolchildren
by
Michael Jerrett
,
Mark J. Nieuwenhuijsen
,
Dadvand, Payam
in
Air pollution
,
Biological Sciences
,
built environment
2015
Exposure to green space has been associated with better physical and mental health. Although this exposure could also influence cognitive development in children, available epidemiological evidence on such an impact is scarce. This study aimed to assess the association between exposure to green space and measures of cognitive development in primary schoolchildren. This study was based on 2,593 schoolchildren in the second to fourth grades (7â10 y) of 36 primary schools in Barcelona, Spain (2012â2013). Cognitive development was assessed as 12-mo change in developmental trajectory of working memory, superior working memory, and inattentiveness by using four repeated (every 3 mo) computerized cognitive tests for each outcome. We assessed exposure to green space by characterizing outdoor surrounding greenness at home and school and during commuting by using high-resolution (5 m à 5 m) satellite data on greenness (normalized difference vegetation index). Multilevel modeling was used to estimate the associations between green spaces and cognitive development. We observed an enhanced 12-mo progress in working memory and superior working memory and a greater 12-mo reduction in inattentiveness associated with greenness within and surrounding school boundaries and with total surrounding greenness index (including greenness surrounding home, commuting route, and school). Adding a traffic-related air pollutant (elemental carbon) to models explained 20â65% of our estimated associations between school greenness and 12-mo cognitive development. Our study showed a beneficial association between exposure to green space and cognitive development among schoolchildren that was partly mediated by reduction in exposure to air pollution.
Significance Green spaces have a range of health benefits, but little is known in relation to cognitive development in children. This study, based on comprehensive characterization of outdoor surrounding greenness (at home, school, and during commuting) and repeated computerized cognitive tests in schoolchildren, found an improvement in cognitive development associated with surrounding greenness, particularly with greenness at schools. This association was partly mediated by reductions in air pollution. Our findings provide policymakers with evidence for feasible and achievable targeted interventions such as improving green spaces at schools to attain improvements in mental capital at population level.
Journal Article
Association between Early Life Exposure to Air Pollution and Working Memory and Attention
by
Cirach, Marta
,
Sunyer, Jordi
,
Basagaña, Xavier
in
Air Pollutants - analysis
,
Air pollution
,
Air pollution research
2019
Although previous studies have reported negative associations between exposure to air pollution and cognition, studies of the effects of prenatal and postnatal exposures in early childhood have been limited.
We sought to assess the role exposure to fine particulate matter ([Formula: see text]) during different prenatal and postnatal windows may play in children's cognitive development at school age.
Within the Brain Development and Air Pollution Ultrafine Particles in School Children (BREATHE) Project, we estimated residential [Formula: see text] exposures by land use regression for the prenatal period and first seven postnatal years of 2,221 children from Barcelona, Spain. The participants ([Formula: see text]) completed computerized tests assessing working memory, attentiveness, and conflict network during four visits in 2012–2013. We used linear mixed effects and distributed lag models to assess the period of exposure to [Formula: see text] in association with cognitive development.
Inverse associations were identified between [Formula: see text] exposure during the fifth and sixth postnatal years and working memory, with boys showing much higher vulnerability. Regarding attention functions, exposure to higher [Formula: see text] levels during the prenatal period and from the fourth postnatal year were associated with a reduction in conflict network performance, though we found no association with attentiveness. The overall estimated cumulative effect of a [Formula: see text] increase in [Formula: see text] resulted in a reduction in the working memory [Formula: see text] score of [Formula: see text] [95% confidence interval (CI): [Formula: see text], [Formula: see text]] points and an increase in the conflict attentional network of 11.31 (95% CI: 6.05, 16.57) milliseconds, indicating a poorer performance.
Early life exposure to [Formula: see text] was associated with a reduction in fundamental cognitive abilities, including working memory and conflict attentional network. https://doi.org/10.1289/EHP3169.
Journal Article
Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study
by
Cirach, Marta
,
Sunyer, Jordi
,
Querol, Xavier
in
Air Pollutants - adverse effects
,
Air Pollutants - analysis
,
Air pollution
2015
Air pollution is a suspected developmental neurotoxicant. Many schools are located in close proximity to busy roads, and traffic air pollution peaks when children are at school. We aimed to assess whether exposure of children in primary school to traffic-related air pollutants is associated with impaired cognitive development.
We conducted a prospective study of children (n = 2,715, aged 7 to 10 y) from 39 schools in Barcelona (Catalonia, Spain) exposed to high and low traffic-related air pollution, paired by school socioeconomic index; children were tested four times (i.e., to assess the 12-mo developmental trajectories) via computerized tests (n = 10,112). Chronic traffic air pollution (elemental carbon [EC], nitrogen dioxide [NO2], and ultrafine particle number [UFP; 10-700 nm]) was measured twice during 1-wk campaigns both in the courtyard (outdoor) and inside the classroom (indoor) simultaneously in each school pair. Cognitive development was assessed with the n-back and the attentional network tests, in particular, working memory (two-back detectability), superior working memory (three-back detectability), and inattentiveness (hit reaction time standard error). Linear mixed effects models were adjusted for age, sex, maternal education, socioeconomic status, and air pollution exposure at home. Children from highly polluted schools had a smaller growth in cognitive development than children from the paired lowly polluted schools, both in crude and adjusted models (e.g., 7.4% [95% CI 5.6%-8.8%] versus 11.5% [95% CI 8.9%-12.5%] improvement in working memory, p = 0.0024). Cogently, children attending schools with higher levels of EC, NO2, and UFP both indoors and outdoors experienced substantially smaller growth in all the cognitive measurements; for example, a change from the first to the fourth quartile in indoor EC reduced the gain in working memory by 13.0% (95% CI 4.2%-23.1%). Residual confounding for social class could not be discarded completely; however, the associations remained in stratified analyses (e.g., for type of school or high-/low-polluted area) and after additional adjustments (e.g., for commuting, educational quality, or smoking at home), contradicting a potential residual confounding explanation.
Children attending schools with higher traffic-related air pollution had a smaller improvement in cognitive development.
Journal Article
Infection induced SARS-CoV-2 seroprevalence and heterogeneity of antibody responses in a general population cohort study in Catalonia Spain
2021
Sparse data exist on the complex natural immunity to SARS-CoV-2 at the population level. We applied a well-validated multiplex serology test in 5000 participants of a general population study in Catalonia in blood samples collected from end June to mid November 2020. Based on responses to fifteen isotype-antigen combinations, we detected a seroprevalence of 18.1% in adults (n = 4740), and modeled extrapolation to the general population of Catalonia indicated a 15.3% seroprevalence. Antibodies persisted up to 9 months after infection. Immune profiling of infected individuals revealed that with increasing severity of infection (asymptomatic, 1–3 symptoms, ≥ 4 symptoms, admitted to hospital/ICU), seroresponses were more robust and rich with a shift towards IgG over IgA and anti-spike over anti-nucleocapsid responses. Among seropositive participants, lower antibody levels were observed for those ≥ 60 years vs < 60 years old and smokers vs non-smokers. Overweight/obese participants vs normal weight had higher antibody levels. Adolescents (13–15 years old) (n = 260) showed a seroprevalence of 11.5%, were less likely to be tested seropositive compared to their parents and had dominant anti-spike rather than anti-nucleocapsid IgG responses. Our study provides an unbiased estimate of SARS-CoV-2 seroprevalence in Catalonia and new evidence on the durability and heterogeneity of post-infection immunity.
Journal Article
Dynamics of coarse and fine particle exposure in transport microenvironments
by
Kumar, Prashant
,
Singh, Anant Pratap
,
Rivas, Ioar
in
704/172/4081
,
704/844/685
,
Air pollution
2018
A significant fraction of daily personal exposure to air pollutants occurs during commuting in transport microenvironments (TMEs). We carried out systematic mobile monitoring on a pre-defined route to assess personal exposure levels of particulate matter (PM) in four TMEs (bus, car, cycle and walk). Measurements were made during morning peak (MP), afternoon off-peak (OP) and evening peak (EP) hours in a typical UK town, Guildford. The objectives were to quantify the real-time exposure to fine and coarse particles, identify the factors influencing their spatiotemporal variation and estimate the respiratory deposition doses (RDD). The mean PM
10
concentrations were 90 ± 63, 23 ± 9, 14 ± 17 and 63 ± 76 μg m
−3
for bus, car, cycle and walk modes, respectively. The average ratios of PM
2.5
/PM
10
were 0.32, 0.90, 0.67 and 0.36 for bus, car, cycle and car journeys, respectively. The mean concentrations of coarse particles (PM
2.5-10
) followed the trend: bus > walk > cycle > car. In contrast, mean concentrations of submicron (PM
1
) and fine particles (PM
2.5
) were usually high in the car while lowest for cyclists. RDD depend on the physical activity, particle size distribution and thus deposited fraction are not always proportional to the ambient concentration. RDD for coarse particles were largest for the walk mode (56 ± 14 μg h
−1
), followed by buses (31 ± 2 μg h
−1
), cycle (12 ± 3 μg h
−1
) and cars (1.2 ± 0.3 μg h
−1
). The corresponding RDD of fine particles were comparable for both walk (5.5 ± 0.3 μg h
−1
) and cycle (5.1 ± 1.2 μg h
−1
), followed by bus (4.1 ± 0.7 μg h
−1
) and car (2.0 ± 0.2 μg h
−1
). Car mode experienced both the least concentrations and RDD for coarse particles. It also had the lowest RDD for fine particles despite high concentrations. Physical activity of car commuters is modest compared with walking and cycling, which makes the rank ordering of RDD different than those of exposure concentrations. Hence the management of commuting exposures should consider potential dose and not just exposure concentration for curtailing adverse health effects related to commuting. RDD for pedestrian and cycle modes were not the lowest among the measured modes but opportunities such as an increased distance between the heavily trafficked roadways and pedestrians/cyclists should be considered in urban planning to reduce potential doses.
Commuting exposure: consider respiratory deposition doses, not just concentrations
People using environmental-friendly commuting methods such as bicycle and walk are more at risk of pollution than those in cars. Researchers from the University of Surrey, UK, and North Carolina State University, USA, measured personal exposure levels of particulate matter (PM) in four transport modes (bus, car, cycle and walk) during peak and off-peak hours in a typical UK town, Guildford. Submicron (PM
1
) and fine particle (PM
2.5
) concentrations were usually high in the car while lowest for cyclists. The respiratory deposition doses for fine particles were comparable for walk and cycle, followed by bus and car. The management of commuting exposures should consider potential dose and not just exposure concentration. Opportunities such an increased distance between the heavily trafficked roadways and pedestrians/cyclists should be considered in urban planning to reduce potential doses.
Journal Article
Traffic-Related Air Pollution, Noise at School, and Behavioral Problems in Barcelona Schoolchildren: A Cross-Sectional Study
by
Cirach, Marta
,
Sunyer, Jordi
,
Guxens, Mònica
in
Air Pollutants - toxicity
,
Air pollution
,
Air Pollution - adverse effects
2016
The available evidence of the effects of air pollution and noise on behavioral development is limited, and it overlooks exposure at schools, where children spend a considerable amount of time.
We aimed to investigate the associations of exposure to traffic-related air pollutants (TRAPs) and noise at school on behavioral development of schoolchildren.
We evaluated children 7-11 years of age in Barcelona (Catalonia, Spain) during 2012-2013 within the BREATHE project. Indoor and outdoor concentrations of elemental carbon (EC), black carbon (BC), and nitrogen dioxide (NO2) were measured at schools in two separate 1-week campaigns. In one campaign we also measured noise levels inside classrooms. Parents filled out the strengths and difficulties questionnaire (SDQ) to assess child behavioral development, while teachers completed the attention deficit/hyperactivity disorder criteria of the DSM-IV (ADHD-DSM-IV) list to assess specific ADHD symptomatology. Negative binomial mixed-effects models were used to estimate associations between the exposures and behavioral development scores.
Interquartile range (IQR) increases in indoor and outdoor EC, BC, and NO2 concentrations were positively associated with SDQ total difficulties scores (suggesting more frequent behavioral problems) in adjusted multivariate models, whereas noise was significantly associated with ADHD-DSM-IV scores.
In our study population of 7- to 11-year-old children residing in Barcelona, exposure to TRAPs at school was associated with increased behavioral problems in schoolchildren. Noise exposure at school was associated with more ADHD symptoms.
Forns J, Dadvand P, Foraster M, Alvarez-Pedrerol M, Rivas I, López-Vicente M, Suades-Gonzalez E, Garcia-Esteban R, Esnaola M, Cirach M, Grellier J, Basagaña X, Querol X, Guxens M, Nieuwenhuijsen MJ, Sunyer J. 2016. Traffic-related air pollution, noise at school, and behavioral problems in Barcelona schoolchildren: a cross-sectional study. Environ Health Perspect 124:529-535; http://dx.doi.org/10.1289/ehp.1409449.
Journal Article
Functional structure of local connections and differentiation of cerebral cortex areas in the neonate
by
Falcón, Carles
,
Gascón, Mireia
,
Llurba, Elisa
in
Amygdala
,
Brain mapping
,
Brain Mapping - methods
2024
•The study informs on the differentiation of cerebral cortex areas in neonates.•A novel approach was used to map the functional structure of local connections.•The existence of measurable connections does not necessarily indicate full maturity.•A long developmental journey the neonatal brain must undergo to reach adulthood.
Neuroimaging research on functional connectivity can provide valuable information on the developmental differentiation of the infant cerebral cortex into its functional areas. We examined healthy neonates to comprehensively map brain functional connectivity using a combination of local measures that uniquely capture the rich spatial structure of cerebral cortex functional connections. Optimal functional MRI scans were obtained in 61 neonates. Local functional connectivity maps were based on Iso-Distance Average Correlation (IDAC) measures. Single distance maps and maps combining three distinct IDAC measures were used to assess different levels of cortical area functional differentiation. A set of brain areas showed higher connectivity than the rest of the brain parenchyma in each local distance map. These areas were consistent with those supporting basic aspects of the neonatal repertoire of adaptive behaviors and included the sensorimotor, auditory and visual cortices, the frontal operculum/anterior insula (relevant for sucking, swallowing and the sense of taste), paracentral lobule (processing anal and urethral sphincter activity), default mode network (relevant for self-awareness), and limbic-emotional structures such as the anterior cingulate cortex, amygdala and hippocampus. However, the results also indicate that brain areas presumed to be actively developing may not necessarily be mature. In fact, combined distance, second-level maps confirmed that the functional differentiation of the cerebral cortex into functional areas in neonates is far from complete. Our results provide a more comprehensive understanding of the developing brain systems, while also highlighting the substantial developmental journey that the neonatal brain must undergo to reach adulthood.
Journal Article
Traffic-related air pollution and spectacles use in schoolchildren
by
Cirach, Marta
,
Sunyer, Jordi
,
Basagaña, Xavier
in
Acuity
,
Air Pollutants - adverse effects
,
Air Pollutants - analysis
2017
To investigate the association between exposure to traffic-related air pollution and use of spectacles (as a surrogate measure for myopia) in schoolchildren.
We analyzed the impact of exposure to NO2 and PM2.5 light absorbance at home (predicted by land-use regression models) and exposure to NO2 and black carbon (BC) at school (measured by monitoring campaigns) on the use of spectacles in a cohort of 2727 schoolchildren (7-10 years old) in Barcelona (2012-2015). We conducted cross-sectional analyses based on lifelong exposure to air pollution and prevalent cases of spectacles at baseline data collection campaign as well as longitudinal analyses based on incident cases of spectacles use and exposure to air pollution during the three-year period between the baseline and last data collection campaigns. Logistic regression models were developed to quantify the association between spectacles use and each of air pollutants adjusted for relevant covariates.
An interquartile range increase in exposure to NO2 and PM2.5 absorbance at home was respectively associated with odds ratios (95% confidence intervals (CIs)) for spectacles use of 1.16 (1.03, 1.29) and 1.13 (0.99, 1.28) in cross-sectional analyses and 1.15 (1.00, 1.33) and 1.23 (1.03, 1.46) in longitudinal analyses. Similarly, odds ratio (95% CIs) of spectacles use associated with an interquartile range increase in exposures to NO2 and black carbon at school was respectively 1.32 (1.09, 1.59) and 1.13 (0.97, 1.32) in cross-sectional analyses and 1.12 (0.84, 1.50) and 1.27 (1.03, 1.56) in longitudinal analyses. These findings were robust to a range of sensitivity analyses that we conducted.
We observed increased risk of spectacles use associated with exposure to traffic-related air pollution. These findings require further confirmation by future studies applying more refined outcome measures such as quantified visual acuity and separating different types of refractive errors.
Journal Article
Traffic pollution exposure is associated with altered brain connectivity in school children
by
Capellades, Jaume
,
Sunyer, Jordi
,
Blanco-Hinojo, Laura
in
Air pollution
,
Air Pollution - adverse effects
,
Airborne particulates
2016
Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain.
Journal Article