Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
84
result(s) for
"Rivière, Pascal"
Sort by:
Submesoscale ocean fronts act as biological hotspot for southern elephant seal
2019
The area west of the Kerguelen Islands (20–70°E/45–60°S) is characterized by a weak mesoscale activity except for a standing meander region of the Antarctic Circumpolar Current (ACC) localized between 20 and 40°E. A unique bio-physical dataset at high-resolution collected by a southern elephant seal (
Mirounga leonina
) reveals a conspicuous increase in foraging activity at the standing meander site up to 5 times larger than during the rest of her three-month trip west of the Kerguelen Islands. Here, we propose a physical explanation for such high biological activity based on the study of small-scale fronts with scales of 5 to 20 km, also called submesoscales. The standing meander is associated with intensified frontal dynamics at submesoscale, not observed in the rest of the region. Results shed new light on the spatial distribution of submesoscale fronts in the under-sampled area west of the Kerguelen plateau and emphasize their importance for upper trophic levels. Despite that most elephant seals target foraging grounds east of the Kerguelen Plateau, our findings suggest that excursions to the west are not accidental, and may be explained by the recurrently elevated physical and biological activity of the site. As such, other standing meanders of the ACC may also act as biological hotspots where trophic interactions are stimulated by submesoscale turbulence.
Journal Article
Enhanced upward heat transport at deep submesoscale ocean fronts
by
Menemenlis, Dimitris
,
Rivière, Pascal
,
Siegelman, Lia
in
Air-sea flux
,
Antarctic Circumpolar Current
,
Climate system
2020
The ocean is the largest solar energy collector on Earth. The amount of heat it can store is modulated by its complex circulation, which spans a broad range of spatial scales, from metres to thousands of kilometres. In the classical paradigm, fine oceanic scales, less than 20 km in size, are thought to drive a significant downward heat transport from the surface to the ocean interior, which increases oceanic heat uptake. Here we use a combination of satellite and in situ observations in the Antarctic Circumpolar Current to diagnose oceanic vertical heat transport. The results explicitly demonstrate how deep-reaching submesoscale fronts, with a size smaller than 20 km, are generated by mesoscale eddies of size 50–300 km. In contrast to the classical paradigm, these submesoscale fronts are shown to drive an anomalous upward heat transport from the ocean interior back to the surface that is larger than other contributions to vertical heat transport and of comparable magnitude to air–sea fluxes. This effect can remarkably alter the oceanic heat uptake and will be strongest in eddy-rich regions, such as the Antarctic Circumpolar Current, the Kuroshio Extension and the Gulf Stream, all of which are key players in the climate system.
Journal Article
Bringing physics to life at the submesoscale
by
Lévy, Marina
,
Franks, Peter J. S.
,
Rivière, Pascal
in
Earth Sciences
,
Earth, ocean, space
,
ecosystems
2012
A common dynamical paradigm is that turbulence in the upper ocean is dominated by three classes of motion: mesoscale geostrophic eddies, internal waves and microscale three‐dimensional turbulence. Close to the ocean surface, however, a fourth class of turbulent motion is important: submesoscale frontal dynamics. These have a horizontal scale of O(1–10) km, a vertical scale of O(100) m, and a time scale of O(1) day. Here we review the physical‐chemical‐biological dynamics of submesoscale features, and discuss strategies for sampling them. Submesoscale fronts arise dynamically through nonlinear instabilities of the mesoscale currents. They are ephemeral, lasting only a few days after they are formed. Strong submesoscale vertical velocities can drive episodic nutrient pulses to the euphotic zone, and subduct organic carbon into the ocean's interior. The reduction of vertical mixing at submesoscale fronts can locally increase the mean time that photosynthetic organisms spend in the well‐lit euphotic layer and promote primary production. Horizontal stirring can create intense patchiness in planktonic species. Submesoscale dynamics therefore can change not only primary and export production, but also the structure and the functioning of the planktonic ecosystem. Because of their short time and space scales, sampling of submesoscale features requires new technologies and approaches. This paper presents a critical overview of current knowledge to focus attention and hopefully interest on the pressing scientific questions concerning these dynamics.
Key Points
Submesoscale physics control ecology locally, but also feedback to basin scales
Strong gradients in community structure are created at the submesoscale
Despite recent innovations, sampling the submesoscale remains a major challenge
Journal Article
On the sensitivity of plankton ecosystem models to the formulation of zooplankton grazing
2021
Model representations of plankton structure and dynamics have consequences for a broad spectrum of ocean processes. Here we focus on the representation of zooplankton and their grazing dynamics in such models. It remains unclear whether phytoplankton community composition, growth rates, and spatial patterns in plankton ecosystem models are especially sensitive to the specific means of representing zooplankton grazing. We conduct a series of numerical experiments that explicitly address this question. We focus our study on the form of the functional response to changes in prey density, including the formulation of a grazing refuge. We use a contemporary biogeochemical model based on continuum size-structured organization, including phytoplankton diversity, coupled to a physical model of the California Current System. This region is of particular interest because it exhibits strong spatial gradients. We find that small changes in grazing refuge formulation across a range of plausible functional forms drive fundamental differences in spatial patterns of plankton concentrations, species richness, pathways of grazing fluxes, and underlying seasonal cycles. An explicit grazing refuge, with refuge prey concentration dependent on grazers’ body size, using allometric scaling, is likely to provide more coherent plankton ecosystem dynamics compared to classic formulations or size-independent threshold refugia. We recommend that future plankton ecosystem models pay particular attention to the grazing formulation and implement a threshold refuge incorporating size-dependence, and we call for a new suite of experimental grazing studies.
Journal Article
A New Eco-Physical, Individual-Based Model of Humpback Whale (Megaptera novaeangliae, Borowski, 1781) Swimming and Diving
by
Rivière, Pascal
,
Coston-Guarini, Jennifer
,
González Félix, Marisa
in
aerobic metabolism
,
Analysis
,
Apnea
2025
Among marine organisms, baleen whale species like the humpback whale (Megaptera novaeangliae) are a case for which individual-based models are necessary to study population changes because individual trait variabilities predominate over average demographic rates to govern population dynamics. These models require quantification of individual organisms’ dynamics with respect to local conditions, which implies optimal strategy frameworks cannot be used. Instead, to quantify how individuals perform according to the environmental conditions they encounter, we formulated a model linking individual mechanical characteristics of swimming and diving with their aerobic metabolism and behavior. The model simulates the dynamics of swimming and diving for the reported range of whale sizes (1000 to 50,000 kg). Additional processes simulate foraging events including rapid accelerations and water engulfment, which modifies whale shape, weight and drag. Simulations show how the energy cost of swimming at equilibrium increases geometrically with velocity and linearly with mass. The duration and distance covered under apnea vary monotonically with mass but not with velocity; hence, there is a positive mass-dependent optimal velocity that maximizes the distance and duration of apnea. The dive limit was explored with a combination of the physiological state, mechanical force produced and distance to return to surface. This combination is imposed as an inequality constraint on the whale individual. The inequality constraint, transformed as a multi-layer perceptron, which continuously processes information about oxygen, depth and relative velocity, provides the whale individual with autonomous decision-making about whether or not to continue the dive. The results also highlight where missing metabolic information is needed to simulate the dynamics of a population of autonomous individuals at the scale of the Global Ocean.
Journal Article
Correction and Accuracy of High- and Low-Resolution CTD Data from Animal-Borne Instruments
by
Picard, Baptiste
,
Guinet, Christophe
,
Rivière, Pascal
in
[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]
,
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
,
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
2019
Most available CTD Satellite Relay Data Logger (CTD-SRDL) profiles are heavily compressed before satellite transmission. High-resolution profiles recorded at the sampling frequency of 0.5 Hz are, however, available upon physical retrieval of the logger. Between 2014 and 2018, several loggers deployed on elephant seals in the Southern Ocean have been set in continuous recording mode, capturing both the ascent and descent for over 60 profiles per day during several months, opening new horizons for the physical oceanography community. Taking advantage of a new dataset made of seven such loggers, a postprocessing procedure is proposed and validated to improve the quality of all CTD-SRDL data: that is, both high-resolution profiles and compressed low-resolution ones. First, temperature and conductivity are corrected for a thermal mass effect. Then salinity spiking and density inversion are removed by adjusting salinity while leaving temperature unchanged. This method, applied here to more than 50 000 profiles, yields significant and systematic improvements in both temperature and salinity, particularly in regions of rapid temperature variation. The continuous high-resolution dataset is then used to provide updated accuracy estimates of CTD-SRDL data. For high-resolution data, accuracies are estimated to be of ±0.02°C for temperature and ±0.03 g kg
−1
for salinity. For low-resolution data, transmitted data points have similar accuracies; however, reconstructed temperature profiles have a reduced accuracy associated with the vertical interpolation of ±0.04°C and a nearly unchanged salinity accuracy of ±0.03 g kg
−1
.
Journal Article
Eddy properties in the Southern California Current System
by
Chenillat, Fanny
,
Rivière, Pascal
,
Blanke, Bruno
in
Biological activity
,
Biological effects
,
California Current
2018
The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for ~ 190 days at ~ 2 km day−1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of ~ 67% California Current waters and ~ 33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy’s core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.
Journal Article
Propagation of Wind Energy into the Deep Ocean through a Fully Turbulent Mesoscale Eddy Field
by
Danioux, Eric
,
Rivière, Pascal
,
Klein, Patrice
in
Dynamics of the ocean (upper and deep oceans)
,
Earth Sciences
,
Earth, ocean, space
2008
The authors analyze the 3D propagation of wind-forced near-inertial motions in a fully turbulent mesoscale eddy field with a primitive equation numerical model. Although the wind stress is uniform, the near-inertial motion field quickly becomes spatially heterogeneous, involving horizontal scales much smaller than the eddy scales. Analysis confirms that refraction by the eddy relative vorticity is the main mechanism responsible for the horizontal distortion of the near-inertial motions, which subsequently triggers their vertical propagation. An important result is the appearance of two maxima of near-inertial vertical velocity (both with rms values reaching 40 m day−1): one at a depth of 100 m and another unexpected one much below the main thermocline around 1700 m. The shallow maximum, captured by the highest vertical normal modes, involves near-inertial motions with a spatial heterogeneity close to the eddy vorticity gradient field. These characteristics match analytical results obtained with Young and Ben Jelloul’s approach. The deep maximum, captured by the lowest vertical normal modes, involves superinertial motions with a frequency of twice the inertial frequency and much smaller horizontal scales. Because of these characteristics, not anticipated by previous analytical studies, these superinertial motions may represent an energy source for small-scale mixing through a mechanism not taken into account in the present study: the parametric subharmonic instability (PSI). This reveals a pathway by which wind energy may have a significant impact on small-scale mixing in the deep interior. Further studies that explicitly take into account PSI are needed to estimate this potential impact.
Journal Article
California Coastal Upwelling Onset Variability: Cross-Shore and Bottom-Up Propagation in the Planktonic Ecosystem
2013
The variability of the California Current System (CCS) is primarily driven by variability in regional wind forcing. In particular, the timing of the spring transition, i.e., the onset of upwelling-favorable winds, varies considerably in the CCS with changes in the North Pacific Gyre Oscillation. Using a coupled physical-biogeochemical model, this study examines the sensitivity of the ecosystem functioning in the CCS to a lead or lag in the spring transition. An early spring transition results in an increased vertical nutrient flux at the coast, with the largest ecosystem consequences, both in relative amplitude and persistence, hundreds of kilometers offshore and at the highest trophic level of the modeled food web. A budget analysis reveals that the propagation of the perturbation offshore and up the food web is driven by remineralization and grazing/predation involving both large and small plankton species.
Journal Article
Sub‐mesoscale fronts modify elephant seals foraging behavior
by
Guinet, Christophe
,
Rivière, Pascal
,
Jaud, Thomas
in
Animal behavior
,
Animal biology
,
Aquatic mammals
2019
Sub‐mesoscale fronts—with scales from 1 to 50 km are ubiquitous in satellite images of the world oceans. They are known to generate strong vertical velocities with significant impacts on biogeochemical fluxes and pelagic ecosystems. Here, we use a unique data set, combining high‐resolution behavioral and physical measurements, to determine the effects of sub‐mesoscale structures on the foraging behavior of 12 instrumented female southern elephant seals. These marine mammals make long voyages (several months over more than 2000 km), diving and feeding continuously in the Antarctic Circumpolar Current. Our results show that elephant seals change their foraging behavior when crossing sub‐mesoscale fronts: They forage more and at shallower depths inside sub‐mesoscale fronts compared to nonfrontal areas, and they also reduce their horizontal velocity likely to concentrate on their vertical diving activity. The results highlight the importance of sub‐mesoscale fronts in enhancing prey accessibility for upper trophic levels, and suggest that trophic interactions are stimulated in these structures.
Journal Article