Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
347 result(s) for "Rizk, Mohamed A."
Sort by:
Preassembled complexes of hAgo2 and ssRNA delivered by nanoparticles: a novel silencing gene expression approach overcoming the absence of the canonical pathway of siRNA processing in the apicomplexan parasite Babesia microti, blood parasite of veterinary and zoonotic importance
Due to the lack of efficacy of the currently used chemical drugs, poor tick control, and lack of effective vaccines against , novel control strategies are urgently needed. In this regard, searching for anti- gene therapy may facilitate the control of this infection. Following this pattern, small interfering RNAs (siRNAs) are widely used to study gene function and hence open the way to control the parasite. However, the primary constraint of this approach is the lack of to RNA-induced silencing complex (RISC) enzymes, making siRNA impractical. In this study, we preassembled complexes with the human enzyme argonaute 2 (hAgo2) and a small interfering RNA (siRNA) single-stranded RNA (ssRNA) against and metabolite transporters. The assembled complexes were generated by developing a gene delivery system with chitosan dehydroascorbic acid nanoparticles. The delivery system effectively protected the loaded RNAi and targeted infected RBCs with a relatively high internalization rate. The assembled complexes were successfully transfected into live parasites for specific slicing of targets. We demonstrated a reduction in the expression of target genes at the mRNA level. Furthermore, this silencing inhibited growth and . For the first time, we used this method to confirm the role of the assembled complexes in manipulating the noncanonical pathway of RNAi in parasites. This novel method provides a means of silencing genes to study their role in host-parasite interactions and as potential targets for gene therapy and control.
Upregulation of BRCA1 and 2 protein expression is associated with dysregulation in amino acids profiles in breast cancer
Background The prevalence of breast cancer (BC) is high among cancers in Egypt, ranking it the most common cause of cancer mortality in women. BRCA1 and BRCA2 tumor suppressors proteins have a specific relationship with BC. Plasma free amino acids levels (PFAAs) have been reported to exhibit altered profiles among cancer patients. Thus, the present study aims to examine the alteration of the PFAAs profiles and investigate their association with BRCA1 and 2 circulating levels in Egyptian females diagnosed with BC and in females with family history of BC to establish potential early detection strategies for BC. Methods and results This study included 26 BC patients, 22 females with family history of BC (relatives) in addition to 38 healthy females as control group. Quantitative measurement of PFAAs was determined by the ion exchange separation method through high performance liquid chromatography. BRCA1 and BRCA2 concentrations were determined using ELISA. Our results showed PFAAs profiles in BC patients and in females with BC family history with significant upregulation in mean plasma levels of Alanine, Phenylalanine, Glutamate and Cysteine and downregulation of Taurine, Threonine, Serine, Glycine, Valine, Methionine and Histidine levels compared to controls. Also, a significant positive correlation was observed between plasma BRCA1 and Valine levels while a significant negative correlation was observed between BRCA2 and Lysine plasma levels. Conclusion PFAAs profile can potentially be used in early screening for BC patients and for susceptible females.
Phytochemical and antimicrobial investigation of the leaves of five Egyptian mango cultivars and evaluation of their essential oils as preservatives materials
The sterols, hydrocarbons and fatty acids constituents of the leaves of five mango cultivars locally implanted in Egypt were identified. The effect of their essential oils (EOs) against food borne microorganisms was studied as preservative materials. The chemical constituents of the EOs isolated from mango leaves were identified by Gas Chromatography–Mass spectrometry (GC–MS) technique. Trans-caryophyllene, α–humulene and α–elemene were identified as terpene hydrocarbons, while 4-hydroxy-4-methyl-2-pentanone as oxygenated compounds were recorded in all tested cultivars with variable amounts. Results showed that Staphylococcus aureus and Escherichia coli were the most sensitive microorganisms tested for Alphonso EOs. On the other hand, Salmonella typhimrium was found to be less susceptible to the EOs of the studied cultivars. The EOs of different mango cultivars induced a steady decrease in the activity of amylase, protease and lipase at the minimum inhibitory concentration (MIC). The treatment of the tested bacteria with the EOs of mango cultivars caused a steady loss in enterotoxins even when applied at the sub-MIC. Bacteria-inoculated apple juice treated with minimum bactericidal concentration of Alphonso oil was free from the bacteria after 5 days of incubation at 25 °C. Eighteeen volatile compounds were found to reduce the activity of the amylase enzyme and the most active was cedrelanol (−7.6 kcal mol−1) followed by alpha-eudesmol (−7.3 kcal mol−1) and humulene oxide (−7 kcal mol−1). The binding mode of both of cedrelanol and alpha-eudesmol with amylase enzyme was illustrated.
Attenuation of sleep deprivation dependent deterioration in male fertility parameters by vitamin C
Purpose Male fertility is multifaceted and its integrity is as well multifactorial. Normal spermatogenesis is dependent on competent testicular function; namely normal anatomy, histology, physiology and hormonal regulation. Lifestyle stressors, including sleep interruption and even deprivation, have been shown to seriously impact male fertility. We studied here both the effects and the possible underlying mechanisms of vitamin C on male fertility in sleep deprived rats. Methods Thirty male Wistar albino rats were used in the present study. Rats were divided (10/group) into: control (remained in their cages with free access to food and water), sleep deprivation (SD) group (subjected to paradoxical sleep deprivation for 5 consequent days, rats received intra-peritoneal injections of vehicle daily throughout the sleep deprivation), and sleep deprivation vitamin C-treated (SDC) group (subjected to sleep deprivation for 5 consequent days with concomitant intra-peritoneal injections of 100 mg/kg/day vitamin C). Sperm analysis, hormonal assay, and measurement of serum oxidative stress and inflammatory markers were performed. Testicular gene expression of Nrf2 and NF-κβ was assessed. Structural changes were evaluated by testicular histopathology, while PCNA immunostaining was conducted to assess spermatogenesis. Results Sleep deprivation had significantly altered sperm motility, viability, morphology and count. Serum levels of cortisol, corticosterone, IL-6, IL-17, MDA were increased, while testosterone and TAC levels were decreased. Testicular gene expression of Nrf2 was decreased, while NF-κβ was increased. Sleep deprivation caused structural changes in the testes, and PCNA immunostaining showed defective spermatogenesis. Administration of vitamin C significantly countered sleep deprivation induced deterioration in male fertility parameters. Conclusion Treatment with vitamin C enhanced booth testicular structure and function in sleep deprived rats. Vitamin C could be a potential fertility enhancer against lifestyle stressors.
On a Novel Hybrid Manta Ray Foraging Optimizer and Its Application on Parameters Estimation of Lithium-Ion Battery
In this paper, we propose a hybrid meta-heuristic algorithm called MRFO-PSO that hybridizes the Manta ray foraging optimization (MRFO) and particle swarm optimization (PSO) with the aim to balance the exploration and exploitation abilities. In the MRFO-PSO, the concept of velocity of the PSO is incorporated to guide the searching process of the MRFO, where the velocity is updated by the first best and the second-best solutions. By this integration, the balancing issue between the exploration phase and exploitation ability has been further improved. To illustrate the robustness and effectiveness of the MRFO-PSO, it is tested on 23 benchmark equations and it is applied to estimate the parameters of Tremblay's model with three different commercial lithium-ion batteries including the Samsung Cylindrical ICR18650-22 lithium-ion rechargeable battery, Tenergy 30209 prismatic cell, Ultralife UBBL03 (type LI-7) rechargeable battery. The study contribution exclusively utilizes hybrid machine learning-based tuning for Tremblay's model parameters to overcome the disadvantages of human-based tuning. In addition, the comparisons of the MRFO-PSO with six recent meta-heuristic methods are performed in terms of some statistical metrics and Wilcoxon’s test-based non-parametric test. As a result, the conducted performance measures have confirmed the competitive results as well as the superiority of the proposed MRFO-PSO.
Moving-Target Defense in Depth: Pervasive Self- and Situation-Aware VM Mobilization across Federated Clouds in Presence of Active Attacks
Federated clouds are interconnected cooperative cloud infrastructures offering vast hosting capabilities, smooth workload migration and enhanced reliability. However, recent devastating attacks on such clouds have shown that such features come with serious security challenges. The oblivious heterogeneous construction, management, and policies employed in federated clouds open the door for attackers to induce conflicts to facilitate pervasive coordinated attacks. In this paper, we present a novel proactive defense that aims to increase attacker uncertainty and complicate target tracking, a critical step for successful coordinated attacks. The presented systemic approach acts as a VM management platform with an intrinsic multidimensional hierarchical attack representation model (HARM) guiding a dynamic, self and situation-aware VM live-migration for moving-target defense (MtD). The proposed system managed to achieve the proposed goals in a resource-, energy-, and cost-efficient manner.
Enhancing Photothermal Therapy for Antibiofilm Wound Healing: Insights from Graphene Oxide-Cranberry Nanosheet Loaded Hydrogel in vitro, in silico, and in vivo Evaluation
Diabetic foot ulcers present a formidable challenge due to colonization by biofilm-forming microorganisms, heightened oxidative stress, and continuous wound maceration caused by excessive exudation. To address these issues, we developed a robust, stretchable, electro-conductive, self-healing, antioxidant, and antibiofilm hydrogel. This hydrogel was synthesized through the crosslinking of polyvinyl alcohol (PVA) and chitosan (CH) with boric acid. To enhance its antimicrobial efficacy, graphene oxide (GO), produced via electrochemical exfoliation in a zinc ion-based electrolyte medium, was incorporated. For optimal antibiofilm performance, GO was functionalized with cranberry (CR) phenolic extracts, forming a graphene oxide-cranberry nanohybrid (GO-CR). The incorporation of GO-CR into the hydrogel significantly improved its stretchability (280% for PVA/CH/GO-CR compared to 200% for PVA/CH). Additionally, the hydrogel demonstrated efficient photothermal conversion under near-infrared (NIR) light, enabling dynamic exudate removal, which is expected to minimize retained exudate between the wound and the dressing, reducing the risk of wound maceration. The hydrogel effectively reduced levels of lipopolysaccharide (LPS)-induced skin inflammation markers, significantly lowering the expression of NLRP3, TNF-α, IL-6, and IL-1β by 39.2%, 31.9%, 41%, and 52.3%, respectively. Histopathological and immunohistochemical analyses further confirmed reduced inflammation and enhanced wound healing. The PVA/CH/GO-CR hydrogel exhibits multifunctional properties that enhance wound healing ulcers. Its superior mechanical, antibacterial, and anti-inflammatory properties and ability to promote angiogenesis make it a promising candidate for effective wound management in diabetic patients.
A new binary salp swarm algorithm: development and application for optimization tasks
Salp swarm algorithm (SSA) is one of the recent meta-heuristic algorithms that imitate the behaviors of salps during the navigating and foraging in oceans to perform global optimization. However, the original study of this algorithm was proposed to solve continuous problems, and it cannot be applied to binary problems directly. In this paper, a new binary version of the SSA named BSSA is proposed based on a modified Arctan transformation. This modification has two features regarding the transfer function, namely multiplicity and mobility. By this modification, the exploration and exploitation capabilities can be enhanced. The proposed BSSA is compared among four variants of transfer functions for solving global optimization problems. Also, a comparative study with different binary algorithms including binary particle swarm, binary bat algorithm and binary sine–cosine algorithm on twenty-four benchmark problems is conducted. Furthermore, the nonparametric statistical test based on Wilcoxon’s rank-sum is carried out at 5% significance level to judge statistically the significant of the obtained results among the different algorithms. The results affirm the superior performance of the modified BSSA variant over the other variants as well as the existing approaches regarding solution quality.
Green Synthesis of Zinc Oxide Nanoparticles from Althaea officinalis Flower Extract Coated with Chitosan for Potential Healing Effects on Diabetic Wounds by Inhibiting TNF-α and IL-6/IL-1β Signaling Pathways
Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by extract and further incorporate them into 2% chitosan (CS) gel. First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive ( and ) and Gram-negative bacteria ( and ). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of . major components to the expected biological targets that may aid wound healing. , A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1β, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. These biocompatible green zinc oxide nanoparticles, by using chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.
Incidence, identification and antibiotic resistance of Salmonella spp. in the well waters of Tadla Plain, Morocco
Concerns about challenges with water availability in the Tadla Plain region of Morocco have grown as a result of groundwater contamination brought on by human activity, climate change, and insufficient groundwater management. The objective of the study is to measure the number of resistant bacteria in the groundwater of Beni Moussa and Beni Aamir, as well as to evaluate the level of water pollution in this area. 200 samples were therefore gathered from 43 wells over the course of four seasonal campaigns in 2017 and 2018. Additionally, the samples were examined to determine whether Salmonella species were present and if they were resistant to the 16 antibiotics that were tested. Salmonella spp. have been identified in 31 isolated strains in total, accounting for 18.02% of all isolated strains. Data on antibiotic resistance show that 58.1% of Salmonella spp. strains are multidrug-resistant (MDR); 38.7% of Salmonella strains are tolerant to at least six antibiotics, 19.4% to at least nine antibiotics, 9.7% to four to seven antibiotics, 6.5% to at least eleven antibiotics, and the remaining 3.2% to up to twelve antibiotics. A considerable level of resistance to cefepime (61.29%), imipenem (54.84%), ceftazidime (45.16%), ofloxacin (70.97%), and ertapenem (74.19%) was found in the data. Consequently, it is important to monitor and regulate the growth of MDR in order to prevent the groundwater's quality from declining.