Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
117
result(s) for
"Rizzoli, Silvio O."
Sort by:
Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins
2014
Synaptic vesicle recycling has long served as a model for the general mechanisms of cellular trafficking. We used an integrative approach, combining quantitative immunoblotting and mass spectrometry to determine protein numbers; electron microscopy to measure organelle numbers, sizes, and positions; and super-resolution fluorescence microscopy to localize the proteins. Using these data, we generated a three-dimensional model of an \"average\" synapse, displaying 300,000 proteins in atomic detail. The copy numbers of proteins involved in the same step of synaptic vesicle recycling correlated closely. In contrast, copy numbers varied over more than three orders of magnitude between steps, from about 150 copies for the endosomal fusion proteins to more than 20,000 for the exocytotic ones.
Journal Article
PHluorin-conjugated secondary nanobodies as a tool for measuring synaptic vesicle exocytosis and endocytosis
2025
Neuronal communication relies on synaptic vesicle recycling, which has long been investigated by live imaging approaches. Synapto-pHluorins, genetically encoded reporters that incorporate a pH-sensitive variant of GFP within the lumen of the synaptic vesicle, have been especially popular. However, they require genetic manipulation, implying that a tool combining their excellent reporter properties with the ease of use of classical immunolabeling would be desirable. We introduce this tool here, relying on primary antibodies against the luminal domain of synaptotagmin 1, decorated with secondary single-domain antibodies (nanobodies) carrying a pHluorin moiety. The application of the antibodies and nanobodies to cultured neurons results in labeling their recycling vesicles, without the need for any additional manipulations. The labeled vesicles respond to stimulation, in the expected fashion, and the pHluorin signals enable the quantification of both exo- and endocytosis. We conclude that pHluorin-conjugated secondary nanobodies are a convenient tool for the analysis of vesicle recycling.
Journal Article
Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation
by
Guerreiro, Patrícia
,
Popova, Blagovesta
,
Ribeiro, Thales
in
alpha-Synuclein - genetics
,
alpha-Synuclein - metabolism
,
Biology and Life Sciences
2014
Aggregation of alpha-synuclein (ASYN) in Lewy bodies and Lewy neurites is the typical pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Furthermore, mutations in the gene encoding for ASYN are associated with familial and sporadic forms of PD, suggesting this protein plays a central role in the disease. However, the precise contribution of ASYN to neuronal dysfunction and death is unclear. There is intense debate about the nature of the toxic species of ASYN and little is known about the molecular determinants of oligomerization and aggregation of ASYN in the cell. In order to clarify the effects of different mutations on the propensity of ASYN to oligomerize and aggregate, we assembled a panel of 19 ASYN variants and compared their behaviour. We found that familial mutants linked to PD (A30P, E46K, H50Q, G51D and A53T) exhibited identical propensities to oligomerize in living cells, but had distinct abilities to form inclusions. While the A30P mutant reduced the percentage of cells with inclusions, the E46K mutant had the opposite effect. Interestingly, artificial proline mutants designed to interfere with the helical structure of the N-terminal domain, showed increased propensity to form oligomeric species rather than inclusions. Moreover, lysine substitution mutants increased oligomerization and altered the pattern of aggregation. Altogether, our data shed light into the molecular effects of ASYN mutations in a cellular context, and established a common ground for the study of genetic and pharmacological modulators of the aggregation process, opening new perspectives for therapeutic intervention in PD and other synucleinopathies.
Journal Article
How energy determines spatial localisation and copy number of molecules in neurons
by
Rizzoli, Silvio O.
,
Mousaei, Kanaan
,
Bergmann, Cornelius
in
631/378/116/2392
,
631/378/116/2393
,
Amino acids
2025
In neurons, the quantities of mRNAs and proteins are traditionally assumed to be determined by functional, electrical or genetic factors. Yet, there may also be global, currently unknown computational rules that are valid across different molecular species inside a cell. Surprisingly, our results show that the energy for molecular turnover is a significant cellular expense, en par with spiking cost, and which requires energy-saving strategies. We show that the drive to save energy determines transcript quantities and their location while acting differently on each molecular species depending on the length, longevity and other features of the respective molecule. We combined our own data and experimental reports from five other large-scale mRNA and proteomics screens, comprising more than ten thousand molecular species to reveal the underlying computational principles of molecular localisation. We found that energy minimisation principles explain experimentally-reported exponential rank distributions of mRNA and protein copy numbers. Our results further reveal robust energy benefits when certain mRNA classes are moved into dendrites, for example mRNAs of proteins with long amino acid chains or mRNAs with large non-coding regions and long half-lives proving surprising insights at the level of molecular populations.
Various factors can be involved in the quantities of mRNAs and proteins in neurons. In this study, the authors show that the drive to save energy determines transcript quantities and their location while acting differently for each molecular species depending on their fundamental parameters.
Journal Article
Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions
by
Fornasiero, Eugenio F.
,
Sakib, M. Sadman
,
Rammner, Burkhard
in
631/337/475
,
631/378/340
,
631/443/319/1557
2018
The turnover of brain proteins is critical for organism survival, and its perturbations are linked to pathology. Nevertheless, protein lifetimes have been difficult to obtain in vivo. They are readily measured in vitro by feeding cells with isotopically labeled amino acids, followed by mass spectrometry analyses. In vivo proteins are generated from at least two sources: labeled amino acids from the diet, and non-labeled amino acids from the degradation of pre-existing proteins. This renders measurements difficult. Here we solved this problem rigorously with a workflow that combines mouse in vivo isotopic labeling, mass spectrometry, and mathematical modeling. We also established several independent approaches to test and validate the results. This enabled us to measure the accurate lifetimes of ~3500 brain proteins. The high precision of our data provided a large set of biologically significant observations, including pathway-, organelle-, organ-, or cell-specific effects, along with a comprehensive catalog of extremely long-lived proteins (ELLPs).
Measuring precise protein turnover rates in animals is technically challenging at the proteomic level. Here, Fornasiero and colleagues use isotopic labeling with mass spectrometry and mathematical modeling to accurately determine protein lifetimes in the mouse brain
Journal Article
A large-scale nanoscopy and biochemistry analysis of postsynaptic dendritic spines
by
Mandad, Sunit
,
Salimi, Vanessa
,
Schikorski, Thomas
in
631/378/548
,
631/378/87
,
692/699/375/364
2021
Dendritic spines, the postsynaptic compartments of excitatory neurotransmission, have different shapes classified from ‘stubby’ to ‘mushroom-like’. Whereas mushroom spines are essential for adult brain function, stubby spines disappear during brain maturation. It is still unclear whether and how they differ in protein composition. To address this, we combined electron microscopy and quantitative biochemistry with super-resolution microscopy to annotate more than 47,000 spines for more than 100 synaptic targets. Surprisingly, mushroom and stubby spines have similar average protein copy numbers and topologies. However, an analysis of the correlation of each protein to the postsynaptic density mass, used as a marker of synaptic strength, showed substantially more significant results for the mushroom spines. Secretion and trafficking proteins correlated particularly poorly to the strength of stubby spines. This suggests that stubby spines are less likely to adequately respond to dynamic changes in synaptic transmission than mushroom spines, which possibly explains their loss during brain maturation.
This work provides a first molecular view of dendritic spines, for both the mushroom and stubby classes, obtained by integrating electron microscopy, quantitative biochemistry, super-resolution microscopy and 3D molecular visualizations.
Journal Article
Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement
by
Rizzoli, Silvio O.
,
Westphal, Volker
,
Jahn, Reinhard
in
Animals
,
Animals, Newborn
,
Antibodies
2008
We present video-rate (28 frames per second) far-field optical imaging with a focal spot size of 62 nanometers in living cells. Fluorescently labeled synaptic vesicles inside the axons of cultured neurons were recorded with stimulated emission depletion (STED) microscopy in a 2.5-micrometer by 1.8-micrometer field of view. By reducing the cross-sectional area of the focal spot by about a factor of 18 below the diffraction limit (260 nanometers), STED allowed us to map and describe the vesicle mobility within the highly confined space of synaptic boutons. Although restricted within boutons, the vesicle movement was substantially faster in nonbouton areas, consistent with the observation that a sizable vesicle pool continuously transits through the axons. Our study demonstrates the emerging ability of optical microscopy to investigate intracellular physiological processes on the nanoscale in real time.
Journal Article
Synapsin condensation controls synaptic vesicle sequestering and dynamics
2023
Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.
Brain functioning critically relies on coordinated neurotransmitter release by synaptic vesicles (SVs) at synapses. This study shows that synapsin/SVs condensation is sufficient to guarantee reliable confinement and motility of SVs at synapses in vivo.
Journal Article
The Aspergillus nidulans MAPK Module AnSte11-Ste50-Ste7-Fus3 Controls Development and Secondary Metabolism
by
Bayram, Özgür
,
Maruyama, Jun-ichi
,
Ficner, Ralf
in
Aspergillus
,
Aspergillus nidulans - growth & development
,
Aspergillus nidulans - metabolism
2012
The sexual Fus3 MAP kinase module of yeast is highly conserved in eukaryotes and transmits external signals from the plasma membrane to the nucleus. We show here that the module of the filamentous fungus Aspergillus nidulans (An) consists of the AnFus3 MAP kinase, the upstream kinases AnSte7 and AnSte11, and the AnSte50 adaptor. The fungal MAPK module controls the coordination of fungal development and secondary metabolite production. It lacks the membrane docking yeast Ste5 scaffold homolog; but, similar to yeast, the entire MAPK module's proteins interact with each other at the plasma membrane. AnFus3 is the only subunit with the potential to enter the nucleus from the nuclear envelope. AnFus3 interacts with the conserved nuclear transcription factor AnSte12 to initiate sexual development and phosphorylates VeA, which is a major regulatory protein required for sexual development and coordinated secondary metabolite production. Our data suggest that not only Fus3, but even the entire MAPK module complex of four physically interacting proteins, can migrate from plasma membrane to nuclear envelope.
Journal Article
Heat denaturation enables multicolor X10-STED microscopy
2023
Expansion microscopy (ExM) improves imaging quality by physically enlarging the biological specimens. In principle, combining a large expansion factor with optical super-resolution should provide extremely high imaging precision. However, large expansion factors imply that the expanded specimens are dim and are therefore poorly suited for optical super-resolution. To solve this problem, we present a protocol that ensures the expansion of the samples up to 10-fold, in a single expansion step, through high-temperature homogenization (X10ht). The resulting gels exhibit a higher fluorescence intensity than gels homogenized using enzymatic digestion (based on proteinase K). This enables the sample analysis by multicolor stimulated emission depletion (STED) microscopy, for a final resolution of 6–8 nm in neuronal cell cultures or isolated vesicles. X10ht also enables the expansion of 100–200 µm thick brain samples, up to 6-fold. The better epitope preservation also enables the use of nanobodies as labeling probes and the implementation of post-expansion signal amplification. We conclude that X10ht is a promising tool for nanoscale resolution in biological samples.
Journal Article