Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
173
result(s) for
"Robert G. Parton"
Sort by:
Rab18 Binds to Hepatitis C Virus NS5A and Promotes Interaction between Sites of Viral Replication and Lipid Droplets
by
Ferguson, Charles
,
Parton, Robert G.
,
Wang, Hongliang
in
Binding sites (Biochemistry)
,
Biology
,
Cell culture
2013
Hepatitis C virus (HCV) is a single-stranded RNA virus that replicates on endoplasmic reticulum-derived membranes. HCV particle assembly is dependent on the association of core protein with cellular lipid droplets (LDs). However, it remains uncertain whether HCV assembly occurs at the LD membrane itself or at closely associated ER membranes. Furthermore, it is not known how the HCV replication complex and progeny genomes physically associate with the presumed sites of virion assembly at or near LDs. Using an unbiased proteomic strategy, we have found that Rab18 interacts with the HCV nonstructural protein NS5A. Rab18 associates with LDs and is believed to promote physical interaction between LDs and ER membranes. Active (GTP-bound) forms of Rab18 bind more strongly to NS5A than a constitutively GDP-bound mutant. NS5A colocalizes with Rab18-positive LDs in HCV-infected cells, and Rab18 appears to promote the physical association of NS5A and other replicase components with LDs. Modulation of Rab18 affects genome replication and possibly also the production of infectious virions. Our results support a model in which specific interactions between viral and cellular proteins may promote the physical interaction between membranous HCV replication foci and lipid droplets.
Journal Article
Minimum information reporting in bio–nano experimental literature
by
Whittaker, Andrew K
,
Thurecht, Kristofer J
,
Parton, Robert G
in
Bioengineering
,
Biological materials
,
Cancer
2018
Studying the interactions between nanoengineered materials and biological systems plays a vital role in the development of biological applications of nanotechnology and the improvement of our fundamental understanding of the bio–nano interface. A significant barrier to progress in this multidisciplinary area is the variability of published literature with regards to characterizations performed and experimental details reported. Here, we suggest a ‘minimum information standard’ for experimental literature investigating bio–nano interactions. This standard consists of specific components to be reported, divided into three categories: material characterization, biological characterization and details of experimental protocols. Our intention is for these proposed standards to improve reproducibility, increase quantitative comparisons of bio–nano materials, and facilitate meta analyses and in silico modelling.
Journal Article
A kinetic view of GPCR allostery and biased agonism
by
Lane, J Robert
,
Parton, Robert G
,
Christopoulos, Arthur
in
631/80/86
,
631/92/436
,
Allosteric properties
2017
Allosteric modulation and biased agonism at GPCRs could be manifestations of the same underlying 'conformational selection' mechanism, and these can be harmonized by considering the influence of ligand–receptor residence time and kinetic context.
G-protein-coupled receptors (GPCRs) are one of the most tractable classes of drug targets. These dynamic proteins can adopt multiple active states that are linked to distinct functional outcomes. Such states can be differentially stabilized by ligands interacting with the endogenous agonist-binding orthosteric site and/or by ligands acting via spatially distinct allosteric sites, leading to the phenomena of 'biased agonism' or 'biased modulation'. These paradigms are having a major impact on modern drug discovery, but it is becoming increasingly apparent that 'kinetic context', at the level of both ligand–receptor and receptor—signal pathway kinetics, can have a profound impact on the observation and quantification of these phenomena. The concept of kinetic context thus represents an important new consideration that should be routinely incorporated into contemporary chemical biology and drug discovery studies of GPCR bias and allostery.
Journal Article
ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane
by
Wang, Huan
,
Du, Ximing
,
Wu, Jia-Wei
in
Binding
,
Biological Transport
,
Cell Membrane - metabolism
2017
ORP5 and ORP8, members of the oxysterol-binding protein (OSBP)-related proteins (ORP) family, are endoplasmic reticulum membrane proteins implicated in lipid trafficking. ORP5 and ORP8 are reported to localize to endoplasmic reticulum–plasma membrane junctions via binding to phosphatidylinositol-4-phosphate (PtdIns(4) P ), and act as a PtdIns(4) P /phosphatidylserine counter exchanger between the endoplasmic reticulum and plasma membrane. Here we provide evidence that the pleckstrin homology domain of ORP5/8 via PtdIns(4,5) P 2 , and not PtdIns(4) P binding mediates the recruitment of ORP5/8 to endoplasmic reticulum–plasma membrane contact sites. The OSBP-related domain of ORP8 can extract and transport multiple phosphoinositides in vitro, and knocking down both ORP5 and ORP8 in cells increases the plasma membrane level of PtdIns(4,5) P 2 with little effect on PtdIns(4) P . Overall, our data show, for the first time, that phosphoinositides other than PtdIns(4) P can also serve as co-exchangers for the transport of cargo lipids by ORPs.
Journal Article
Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest
by
Quaife-Ryan, Gregory A.
,
Wang, Qing-Dong
,
Titmarsh, Drew M.
in
Biological Sciences
,
Cardiomyocytes
,
Cell cycle
2017
The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including β-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both β-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.
Journal Article
A model for membrane curvature generation by caveolin discs driven by differential contact interaction
by
Kozlov, Michael M.
,
Parton, Robert G.
,
Ariotti, Nicholas
in
631/57/2270
,
631/80/313/2026
,
639/766/747
2025
The recent discovery of the flat, disc-like structure of caveolin oligomers, predicted to be embedded in one membrane leaflet, has challenged earlier models of membrane curvature generation by caveolins during caveola biogenesis. Here, we provide a mechanism for this phenomenon. We propose that the central factor behind the membrane shaping by caveolin discs is a difference in interaction energies of the membrane leaflets with each other and with the hydrophobic faces of the caveolin discs. We demonstrate, through computational analysis, that the caveolin disc embedding induces elastic stresses of tilt and splay in the membrane leaflets, which, in turn, drive membrane kinking along the disc boundaries. The predicted resulting membrane shapes have an overall curved and faceted appearance in agreement with observations. Our model also provides a mechanistic understanding of the role of the negative intrinsic curvatures of lipids such as cholesterol and diacylglycerols, in caveola assembly.
The physical mechanism generating membrane curvature by disc-shaped caveolin complexes is not fully understood. Here, the authors use mathematical modelling to propose a mechanism based on a differential contact energy between the discs and the membrane leaflets.
Journal Article
A Role for Phosphatidic Acid in the Formation of “Supersized” Lipid Droplets
2011
Lipid droplets (LDs) are important cellular organelles that govern the storage and turnover of lipids. Little is known about how the size of LDs is controlled, although LDs of diverse sizes have been observed in different tissues and under different (patho)physiological conditions. Recent studies have indicated that the size of LDs may influence adipogenesis, the rate of lipolysis and the oxidation of fatty acids. Here, a genome-wide screen identifies ten yeast mutants producing \"supersized\" LDs that are up to 50 times the volume of those in wild-type cells. The mutated genes include: FLD1, which encodes a homologue of mammalian seipin; five genes (CDS1, INO2, INO4, CHO2, and OPI3) that are known to regulate phospholipid metabolism; two genes (CKB1 and CKB2) encoding subunits of the casein kinase 2; and two genes (MRPS35 and RTC2) of unknown function. Biochemical and genetic analyses reveal that a common feature of these mutants is an increase in the level of cellular phosphatidic acid (PA). Results from in vivo and in vitro analyses indicate that PA may facilitate the coalescence of contacting LDs, resulting in the formation of \"supersized\" LDs. In summary, our results provide important insights into how the size of LDs is determined and identify novel gene products that regulate phospholipid metabolism.
Journal Article
AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation
by
Fernández-Vidal, Andrea
,
Pol, Albert
,
Rentero, Carles
in
631/443/319
,
631/45/607/275
,
631/80/128/1653
2015
Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity.
Lipid droplets (LDs) supply fatty acids to cellular processes and move bidirectionally on microtubules. Here the authors show that nutrient starvation causes dispersal of mitochondria and LD to the periphery of the cell along detyrosinated microtubules and increases LD–mitochondria interactions in an AMPK-dependent manner.
Journal Article
Endocytic Crosstalk: Cavins, Caveolins, and Caveolae Regulate Clathrin-Independent Endocytosis
by
Chaudhary, Natasha
,
Gaus, Katharina
,
Yap, Alpha S.
in
3T3 Cells
,
Animals
,
Biology and Life Sciences
2014
Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to study this pathway, identify caveola-independent functions of the cavins and propose a novel mechanism for inhibition of the CLIC/GEEC pathway by caveolin.
Journal Article
Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells
by
Rae, James
,
Polo, Jose, M
,
Australian Regenerative Medicine Institute (ARMI) ; Monash University [Clayton]
in
13/1
,
13/100
,
13/31
2021
Abstract With age, hematopoietic stem cells (HSC) undergo changes in function, including reduced regenerative potential and loss of quiescence, which is accompanied by a significant expansion of the stem cell pool that can lead to haematological disorders. Elevated metabolic activity has been implicated in driving the HSC ageing phenotype. Here we show that nicotinamide riboside (NR), a form of vitamin B3, restores youthful metabolic capacity by modifying mitochondrial function in multiple ways including reduced expression of nuclear encoded metabolic pathway genes, damping of mitochondrial stress and a decrease in mitochondrial mass and network-size. Metabolic restoration is dependent on continuous NR supplementation and accompanied by a shift of the aged transcriptome towards the young HSC state, more youthful bone marrow cellular composition and an improved regenerative capacity in a transplant setting. Consequently, NR administration could support healthy ageing by re-establishing a more youthful hematopoietic system.
Journal Article