Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
152 result(s) for "Roberts, Ian N"
Sort by:
Release of cell wall phenolic esters during hydrothermal pretreatment of rice husk and rice straw
Background Rice husk and rice straw represent promising sources of biomass for production of renewable fuels and chemicals. For efficient utilisation, lignocellulosic components must first be pretreated to enable efficient enzymatic saccharification and subsequent fermentation. Existing pretreatments create breakdown products such as sugar-derived furans, and lignin-derived phenolics that inhibit enzymes and fermenting organisms. Alkali pretreatments have also been shown to release significant levels of simple, free phenolics such as ferulic acid that are normally esterified to cell wall polysaccharides in the intact plant. These phenolics have recently been found to have considerable inhibitory properties. The aim of this research has been to establish the extent to which such free phenolic acids are also released during hydrothermal pretreatment of rice straw (RS) and rice husk (RH). Results RS and RH were subjected to hydrothermal pretreatments over a wide range of severities (1.57–5.45). FTIR analysis showed that the pretreatments hydrolysed and solubilised hemicellulosic moieties, leading to an enrichment of lignin and crystalline cellulose in the insoluble residue. The residues also lost the capacity for UV autofluorescence at pH 7 or pH 10, indicating the breakdown or release of cell wall phenolics. Saponification of raw RS and RH enabled identification and quantification of substantial levels of simple phenolics including ferulic acid (tFA), coumaric acid (pCA) and several diferulic acids (DiFAs) including 8-O-4′-DiFA, 8,5′-DiFA and 5,5′-DiFA. RH had higher levels of pCA and lower levels of tFA and DiFAs compared with RS. Assessment of the pretreatment liquors revealed that pretreatment-liberated phenolics present were not free but remained as phenolic esters (at mM concentrations) that could be readily freed by saponification. Many were lost, presumably through degradation, at the higher severities. Conclusion Differences in lignin, tFA, DiFAs and pCA between RS and RH reflect differences in cell wall physiology, and probably contribute to the higher recalcitrance of RH compared with RS. Hydrothermal pretreatments, unlike alkali pretreatments, release cinnamic acid components as esters. The potential for pretreatment-liberated phenolic esters to be inhibitory to fermenting microorganisms is not known. However, the present study shows that they are found at concentrations that could be significantly inhibitory if released as free forms by enzyme activity.
Prevalence and Dynamics of Ribosomal DNA Micro-heterogeneity Are Linked to Population History in Two Contrasting Yeast Species
Despite the considerable number and taxonomic breadth of past and current genome sequencing projects, many of which necessarily encompass the ribosomal DNA, detailed information on the prevalence and evolutionary significance of sequence variation in this ubiquitous genomic region are severely lacking. Here, we attempt to address this issue in two closely related yet contrasting yeast species, the baker’s yeast Saccharomyces cerevisiae and the wild yeast Saccharomyces paradoxus . By drawing on existing datasets from the Saccharomyces Genome Resequencing Project, we identify a rich seam of ribosomal DNA sequence variation, characterising 1,068 and 970 polymorphisms in 34 S. cerevisiae and 26 S. paradoxus strains respectively. We discover the two species sets exhibit distinct mutational profiles. Furthermore, we show for the first time that unresolved rDNA sequence variation resulting from imperfect concerted evolution of the ribosomal DNA region follows a U-shaped allele frequency distribution in each species, similar to loci that evolve under non-concerted mechanisms but arising through rather different evolutionary processes. Finally, we link differences between the shapes of these allele frequency distributions to the two species’ contrasting population histories.
Diverse Lineages of Candida albicans Live on Old Oaks
Most humans are inhabited by the yeast Candida albicans at some point. While largely harmless, it is the most common cause of yeast infections. Though previously unclear whether the yeast can live outside of warm-blooded animals, Bensasson et al... The human pathogen Candida albicans is considered an obligate commensal of animals, yet it is occasionally isolated from trees, shrubs, and grass. We generated genome sequence data for three strains of C. albicans that we isolated from oak trees in an ancient wood pasture, and compared these to the genomes of over 200 clinical strains. C. albicans strains from oak are similar to clinical C. albicans in that they are predominantly diploid and can become homozygous at the mating locus through whole-chromosome loss of heterozygosity. Oak strains differed from clinical strains in showing slightly higher levels of heterozygosity genome-wide. Using phylogenomic analyses and in silico chromosome painting, we show that each oak strain is more closely related to strains from humans and other animals than to strains from other oaks. The high genetic diversity of C. albicans from old oaks shows that they can live in this environment for extended periods of time.
Yeast diversity in relation to the production of fuels and chemicals
In addition to ethanol, yeasts have the potential to produce many other industrially-relevant chemicals from numerous different carbon sources. However there remains a paucity of information about overall capability across the yeast family tree. Here, 11 diverse species of yeasts with genetic backgrounds representative of different branches of the family tree were investigated. They were compared for their abilities to grow on a range of sugar carbon sources, to produce potential platform chemicals from such substrates and to ferment hydrothermally pretreated rice straw under simultaneous saccharification and fermentation conditions. The yeasts differed considerably in their metabolic capabilities and production of ethanol. A number could produce significant amounts of ethyl acetate, arabinitol, glycerol and acetate in addition to ethanol, including from hitherto unreported carbon sources. They also demonstrated widely differing efficiencies in the fermentation of sugars derived from pre-treated rice straw biomass and differential sensitivities to fermentation inhibitors. A new catabolic property of Rhodotorula mucilaginosa (NCYC 65) was discovered in which sugar substrate is cleaved but the products are not metabolised. We propose that engineering this and some of the other properties discovered in this study and transferring such properties to conventional industrial yeast strains could greatly expand their biotechnological utility.
Reconstructing (Super)Trees from Data Sets with Missing Distances: Not All Is Lost
The wealth of phylogenetic information accumulated over many decades of biological research, coupled with recent technological advances in molecular sequence generation, presents significant opportunities for researchers to investigate relationships across and within the kingdoms of life. However, to make best use of this data wealth, several problems must first be overcome. One key problem is finding effective strategies to deal with missing data. Here, we introduce Lasso, a novel heuristic approach for reconstructing rooted phylogenetic trees from distance matrices with missing values, for data sets where a molecular clock may be assumed. Contrary to other phylogenetic methods on partial data sets, Lasso possesses desirable properties such as its reconstructed trees being both unique and edge-weighted. These properties are achieved by Lasso restricting its leaf set to a large subset of all possible taxa, which in many practical situations is the entire taxa set. Furthermore, the Lasso approach is distance-based, rendering it very fast to run and suitable for data sets of all sizes, including large data sets such as those generated by modern Next Generation Sequencing technologies. To better understand the performance of Lasso, we assessed it by means of artificial and real biological data sets, showing its effectiveness in the presence of missing data. Furthermore, by formulating the supermatrix problem as a particular case of the missing data problem, we assessed Lasso’s ability to reconstruct supertrees. We demonstrate that, although not specifically designed for such a purpose, Lasso performs better than or comparably with five leading supertree algorithms on a challenging biological data set. Finally, we make freely available a software implementation of Lasso so that researchers may, for the first time, perform both rooted tree and supertree reconstruction with branch lengths on their own partial data sets.
Ribosomal DNA Sequence Heterogeneity Reflects Intraspecies Phylogenies and Predicts Genome Structure in Two Contrasting Yeast Species
The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16SrDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of closely related organisms, and discuss how it could be extended to future studies of multilocus rDNA systems.
Enhanced xylose fermentation and hydrolysate inhibitor tolerance of Scheffersomyces shehatae for efficient ethanol production from non-detoxified lignocellulosic hydrolysate
Effective conversion of xylose into ethanol is important for lignocellulosic ethanol production. In the present study, UV-C mutagenesis was used to improve the efficiency of xylose fermentation. The mutated Scheffersomyces shehatae strain TTC79 fermented glucose as efficiently and xylose more efficiently, producing a higher ethanol concentration than the wild-type. A maximum ethanol concentration of 29.04 g/L was produced from 71.31 g/L xylose, which was 58.95 % higher than that of the wild-type. This mutant also displayed significantly improved hydrolysate inhibitors tolerance and increased ethanol production from non-detoxified lignocellulosic hydrolysates. The ethanol yield, productivity and theoretical yield by TTC79 from sugarcane bagasse hydrolysate were 0.46 g/g, 0.20 g/L/h and 90.61 %, respectively, while the corresponding values for the wild-type were 0.20 g/g, 0.04 g/L/h and 39.20 %, respectively. These results demonstrate that S. shehatae TTC79 is a useful non-recombinant strain, combining efficient xylose consumption and high inhibitor tolerance, with potential for application in ethanol production from lignocellulose hydrolysates.
Biorefining of Waste Paper Biomass: Increasing the Concentration of Glucose by Optimising Enzymatic Hydrolysis
Waste copier paper is a potential substrate for the production of glucose relevant for manufacture of platform chemicals and intermediates, being composed of 51 % glucan. The yield and concentration of glucose arising from the enzymatic saccharification of solid ink-free copier paper as cellulosic substrate was studied using a range of commercial cellulase preparations. The results show that in all cellulase preparations examined, maximum hydrolysis was only achieved with the addition of beta-glucosidase, despite its presence in the enzyme mixtures. With the use of Accellerase® (cellulase), high substrate loading decreased conversion yield. However, this was overcome if the enzyme was added between 12.5 and 20 FPU g substrate⁻¹. Furthermore, this reaction condition facilitated continual stirring and enabled sequential additions (up to 50 % w/v) of paper to be made to the hydrolysis reaction, degrading nearly all (99 %) of the cellulose fibres and increasing the final concentration of glucose whilst simultaneously making high substrate concentrations achievable. Under optimal conditions (50 °C, pH 5.0, 72 h), digestions facilitate the production of glucose to much improved concentrations of up to 1.33 mol l⁻¹.
The yin and yang of yeast: biodiversity research and systems biology as complementary forces driving innovation in biotechnology
The aim of this article is to review how yeast has contributed to contemporary biotechnology and to seek underlying principles relevant to its future exploitation for human benefit. Recent advances in systems biology combined with new knowledge of genome diversity promise to make yeast the eukaryotic workhorse of choice for production of everything from probiotics and pharmaceuticals to fuels and chemicals. The ability to engineer new capabilities through introduction of controlled diversity based on a complete understanding of genome complexity and metabolic flux is key. Here, we briefly summarise the history that has led to these apparently simple organisms being employed in such a broad range of commercial applications. Subsequently, we discuss the likely consequences of current yeast research for the future of biotechnological innovation.
Engineering evolution to study speciation in yeasts
The Saccharomyces ‘ sensu stricto ’ yeasts are a group of species that will mate with one another, but interspecific pairings produce sterile hybrids. A retrospective analysis of their genomes revealed that translocations between the chromosomes of these species do not correlate with the group's sequence-based phylogeny 1 (that is, translocations do not drive the process of speciation). However, that analysis was unable to infer what contribution such rearrangements make to reproductive isolation between these organisms. Here, we report experiments that take an interventionist, rather than a retrospective approach to studying speciation, by reconfiguring the Saccharomyces cerevisiae genome so that it is collinear with that of Saccharomyces mikatae . We demonstrate that this imposed genomic collinearity allows the generation of interspecific hybrids that produce a large proportion of spores that are viable, but extensively aneuploid. We obtained similar results in crosses between wild-type S. cerevisiae and the naturally collinear species Saccharomyces paradoxus , but not with non-collinear crosses. This controlled comparison of the effect of chromosomal translocation on species barriers suggests a mechanism for the generation of redundancy in the S. cerevisiae genome 2 .