Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
2,157 result(s) for "Robertson, Chris"
Sort by:
Giraffes ruin everything
It seems that giraffes will misbehave whether attending a birthday party, going to the movies, playing in the park, or just about anything else.
BNT162b2 and ChAdOx1 nCoV-19 Vaccine Effectiveness against Death from the Delta Variant
An analysis of mortality among more than 114,000 SARS-CoV-2–infected people in Scotland revealed that vaccine effectiveness against death caused by the delta variant 14 days or more after the second dose was 90% for the BNT162b2 vaccine and 91% for the ChAdOx1 nCoV-19 vaccine.
If I didn't have you
\"A father and son spend the day together detailing all of the things they could have...if they didn't have each other. In the end, the both decided that candy for dinner ever night or a personal butler is no substitute for a father or a son\"-- Provided by publisher.
Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study
AbstractObjectiveTo estimate the real world effectiveness of the Pfizer-BioNTech BNT162b2 and Oxford-AstraZeneca ChAdOx1-S vaccines against confirmed covid-19 symptoms (including the UK variant of concern B.1.1.7), admissions to hospital, and deaths.DesignTest negative case-control study.SettingCommunity testing for covid-19 in England.Participants156 930 adults aged 70 years and older who reported symptoms of covid-19 between 8 December 2020 and 19 February 2021 and were successfully linked to vaccination data in the National Immunisation Management System.InterventionsVaccination with BNT162b2 or ChAdOx1-S.Main outcome measuresPrimary outcomes were polymerase chain reaction confirmed symptomatic SARS-CoV-2 infections, admissions to hospital for covid-19, and deaths with covid-19.ResultsParticipants aged 80 years and older vaccinated with BNT162b2 before 4 January 2021 had a higher odds of testing positive for covid-19 in the first nine days after vaccination (odds ratio up to 1.48, 95% confidence interval 1.23 to 1.77), indicating that those initially targeted had a higher underlying risk of infection. Vaccine effectiveness was therefore compared with the baseline post-vaccination period. Vaccine effects were noted 10 to 13 days after vaccination, reaching a vaccine effectiveness of 70% (95% confidence interval 59% to 78%), then plateauing. From 14 days after the second dose a vaccination effectiveness of 89% (85% to 93%) was found compared with the increased baseline risk. Participants aged 70 years and older vaccinated from 4 January (when ChAdOx1-S delivery commenced) had a similar underlying risk of covid-19 to unvaccinated individuals. With BNT162b2, vaccine effectiveness reached 61% (51% to 69%) from 28 to 34 days after vaccination, then plateaued. With ChAdOx1-S, effects were seen from 14 to 20 days after vaccination, reaching an effectiveness of 60% (41% to 73%) from 28 to 34 days, increasing to 73% (27% to 90%) from day 35 onwards. On top of the protection against symptomatic disease, a further 43% (33% to 52%) reduced risk of emergency hospital admission and 51% (37% to 62%) reduced risk of death was observed in those who had received one dose of BNT162b2. Participants who had received one dose of ChAdOx1-S had a further 37% (3% to 59%) reduced risk of emergency hospital admission. Follow-up was insufficient to assess the effect of ChAdOx1-S on mortality. Combined with the effect against symptomatic disease, a single dose of either vaccine was about 80% effective at preventing admission to hospital with covid-19 and a single dose of BNT162b2 was 85% effective at preventing death with covid-19.ConclusionVaccination with either one dose of BNT162b2 or ChAdOx1-S was associated with a significant reduction in symptomatic covid-19 in older adults, and with further protection against severe disease. Both vaccines showed similar effects. Protection was maintained for the duration of follow-up (>6 weeks). A second dose of BNT162b2 was associated with further protection against symptomatic disease. A clear effect of the vaccines against the B.1.1.7 variant was found.
Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study
The BNT162b2 mRNA (Pfizer–BioNTech) and ChAdOx1 nCoV-19 (Oxford–AstraZeneca) COVID-19 vaccines have shown high efficacy against disease in phase 3 clinical trials and are now being used in national vaccination programmes in the UK and several other countries. Studying the real-world effects of these vaccines is an urgent requirement. The aim of our study was to investigate the association between the mass roll-out of the first doses of these COVID-19 vaccines and hospital admissions for COVID-19. We did a prospective cohort study using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19—EAVE II—database comprising linked vaccination, primary care, real-time reverse transcription-PCR testing, and hospital admission patient records for 5·4 million people in Scotland (about 99% of the population) registered at 940 general practices. Individuals who had previously tested positive were excluded from the analysis. A time-dependent Cox model and Poisson regression models with inverse propensity weights were fitted to estimate effectiveness against COVID-19 hospital admission (defined as 1–adjusted rate ratio) following the first dose of vaccine. Between Dec 8, 2020, and Feb 22, 2021, a total of 1 331 993 people were vaccinated over the study period. The mean age of those vaccinated was 65·0 years (SD 16·2). The first dose of the BNT162b2 mRNA vaccine was associated with a vaccine effect of 91% (95% CI 85–94) for reduced COVID-19 hospital admission at 28–34 days post-vaccination. Vaccine effect at the same time interval for the ChAdOx1 vaccine was 88% (95% CI 75–94). Results of combined vaccine effects against hospital admission due to COVID-19 were similar when restricting the analysis to those aged 80 years and older (83%, 95% CI 72–89 at 28–34 days post-vaccination). Mass roll-out of the first doses of the BNT162b2 mRNA and ChAdOx1 vaccines was associated with substantial reductions in the risk of hospital admission due to COVID-19 in Scotland. There remains the possibility that some of the observed effects might have been due to residual confounding. UK Research and Innovation (Medical Research Council), Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK.
Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection
Emerging reports of rare neurological complications associated with COVID-19 infection and vaccinations are leading to regulatory, clinical and public health concerns. We undertook a self-controlled case series study to investigate hospital admissions from neurological complications in the 28 days after a first dose of ChAdOx1nCoV-19 ( n  = 20,417,752) or BNT162b2 ( n  = 12,134,782), and after a SARS-CoV-2-positive test ( n  = 2,005,280). There was an increased risk of Guillain–Barré syndrome (incidence rate ratio (IRR), 2.90; 95% confidence interval (CI): 2.15–3.92 at 15–21 days after vaccination) and Bell’s palsy (IRR, 1.29; 95% CI: 1.08–1.56 at 15–21 days) with ChAdOx1nCoV-19. There was an increased risk of hemorrhagic stroke (IRR, 1.38; 95% CI: 1.12–1.71 at 15–21 days) with BNT162b2. An independent Scottish cohort provided further support for the association between ChAdOx1nCoV and Guillain–Barré syndrome (IRR, 2.32; 95% CI: 1.08–5.02 at 1–28 days). There was a substantially higher risk of all neurological outcomes in the 28 days after a positive SARS-CoV-2 test including Guillain–Barré syndrome (IRR, 5.25; 95% CI: 3.00–9.18). Overall, we estimated 38 excess cases of Guillain–Barré syndrome per 10 million people receiving ChAdOx1nCoV-19 and 145 excess cases per 10 million people after a positive SARS-CoV-2 test. In summary, although we find an increased risk of neurological complications in those who received COVID-19 vaccines, the risk of these complications is greater following a positive SARS-CoV-2 test. A self-controlled case series analysis of nearly 32 million people in England shows an increased risk of rare neurological complications in those who received COVID-19 vaccines and following SARS-CoV-2 infection. The results highlight 38 excess cases of Guillain–Barré syndrome per 10 million ChAdOx1nCoV-19 vaccinations.
SARS-CoV-2 infection and COVID-19 vaccination rates in pregnant women in Scotland
Population-level data on COVID-19 vaccine uptake in pregnancy and SARS-CoV-2 infection outcomes are lacking. We describe COVID-19 vaccine uptake and SARS-CoV-2 infection in pregnant women in Scotland, using whole-population data from a national, prospective cohort. Between the start of a COVID-19 vaccine program in Scotland, on 8 December 2020 and 31 October 2021, 25,917 COVID-19 vaccinations were given to 18,457 pregnant women. Vaccine coverage was substantially lower in pregnant women than in the general female population of 18−44 years; 32.3% of women giving birth in October 2021 had two doses of vaccine compared to 77.4% in all women. The extended perinatal mortality rate for women who gave birth within 28 d of a COVID-19 diagnosis was 22.6 per 1,000 births (95% CI 12.9−38.5; pandemic background rate 5.6 per 1,000 births; 452 out of 80,456; 95% CI 5.1−6.2). Overall, 77.4% (3,833 out of 4,950; 95% CI 76.2−78.6) of SARS-CoV-2 infections, 90.9% (748 out of 823; 95% CI 88.7−92.7) of SARS-CoV-2 associated with hospital admission and 98% (102 out of 104; 95% CI 92.5−99.7) of SARS-CoV-2 associated with critical care admission, as well as all baby deaths, occurred in pregnant women who were unvaccinated at the time of COVID-19 diagnosis. Addressing low vaccine uptake rates in pregnant women is imperative to protect the health of women and babies in the ongoing pandemic. Findings from the COVID-19 in Pregnancy in Scotland (COPS) study reveals low levels of vaccination uptake by pregnant women compared to women in the general population and that not being vaccinated is associated with increased risk of severe complications of COVID-19 in pregnancy, including perinatal mortality.
Severe COVID-19 outcomes after full vaccination of primary schedule and initial boosters: pooled analysis of national prospective cohort studies of 30 million individuals in England, Northern Ireland, Scotland, and Wales
Current UK vaccination policy is to offer future COVID-19 booster doses to individuals at high risk of serious illness from COVID-19, but it is still uncertain which groups of the population could benefit most. In response to an urgent request from the UK Joint Committee on Vaccination and Immunisation, we aimed to identify risk factors for severe COVID-19 outcomes (ie, COVID-19-related hospitalisation or death) in individuals who had completed their primary COVID-19 vaccination schedule and had received the first booster vaccine. We constructed prospective cohorts across all four UK nations through linkages of primary care, RT-PCR testing, vaccination, hospitalisation, and mortality data on 30 million people. We included individuals who received primary vaccine doses of BNT162b2 (tozinameran; Pfizer–BioNTech) or ChAdOx1 nCoV-19 (Oxford–AstraZeneca) vaccines in our initial analyses. We then restricted analyses to those given a BNT162b2 or mRNA-1273 (elasomeran; Moderna) booster and had a severe COVID-19 outcome between Dec 20, 2021, and Feb 28, 2022 (when the omicron (B.1.1.529) variant was dominant). We fitted time-dependent Poisson regression models and calculated adjusted rate ratios (aRRs) and 95% CIs for the associations between risk factors and COVID-19-related hospitalisation or death. We adjusted for a range of potential covariates, including age, sex, comorbidities, and previous SARS-CoV-2 infection. Stratified analyses were conducted by vaccine type. We then did pooled analyses across UK nations using fixed-effect meta-analyses. Between Dec 8, 2020, and Feb 28, 2022, 17 337 580 individuals completed their primary vaccine schedule and 14 698 030 individuals received a booster dose. Between Dec 20, 2021, and Feb 28, 2022, 59 510 (0·3%) of the primary vaccine group and 26 100 (0·2%) of those who received their booster had severe COVID-19 outcomes. The risk of severe COVID-19 outcomes reduced after receiving the booster (rate change: 8·8 events per 1000 person-years to 7·6 events per 1000 person-years). Older adults (≥80 years vs 18–49 years; aRR 3·60 [95% CI 3·45–3·75]), those with comorbidities (≥5 comorbidities vs none; 9·51 [9·07–9·97]), being male (male vs female; 1·23 [1·20–1·26]), and those with certain underlying health conditions—in particular, individuals receiving immunosuppressants (yes vs no; 5·80 [5·53–6·09])—and those with chronic kidney disease (stage 5 vs no; 3·71 [2·90–4·74]) remained at high risk despite the initial booster. Individuals with a history of COVID-19 infection were at reduced risk (infected ≥9 months before booster dose vs no previous infection; aRR 0·41 [95% CI 0·29–0·58]). Older people, those with multimorbidity, and those with specific underlying health conditions remain at increased risk of COVID-19 hospitalisation and death after the initial vaccine booster and should, therefore, be prioritised for additional boosters, including novel optimised versions, and the increasing array of COVID-19 therapeutics. National Core Studies–Immunity, UK Research and Innovation (Medical Research Council), Health Data Research UK, the Scottish Government, and the University of Edinburgh.
Effect of Vaccination on Transmission of SARS-CoV-2
In this report from Scotland, vaccination of health care workers for SARS-CoV-2 was associated with a decrease in household transmission.