Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
195
result(s) for
"Roccia, S."
Sort by:
Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields
2017
We report on a search for ultralow-mass axionlike dark matter by analyzing the ratio of the spin-precession frequencies of stored ultracold neutrons and Hg199 atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 10−24≤ma≤10−17eV . Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40.
Journal Article
Muonic atom spectroscopy with microgram target material
2023
Muonic atom spectroscopy–the measurement of the x rays emitted during the formation process of a muonic atom–has a long standing history in probing the shape and size of nuclei. In fact, almost all stable elements have been subject to muonic atom spectroscopy measurements and the absolute charge radii extracted from these measurements typically offer the highest accuracy available. However, so far only targets of at least a few hundred milligram could be used as it required to stop a muon beam directly in the target to form the muonic atom. We have developed a new method relying on repeated transfer reactions taking place inside a 100 bar hydrogen gas cell with an admixture of 0.25% deuterium that allows us to drastically reduce the amount of target material needed while still offering an adequate efficiency. Detailed simulations of the transfer reactions match the measured data, suggesting good understanding of the processes taking place inside the gas mixture. As a proof of principle we demonstrate the method with a measurement of the 2
p
-1
s
muonic x rays from a 5
μ
g
gold target.
Journal Article
Achieving ultra-low and -uniform residual magnetic fields in a very large magnetically shielded room for fundamental physics experiments
by
Lauss, B.
,
nEDM collaboration at PSI, The
,
Bouillaud, T.
in
Astronomy
,
Astrophysics and Cosmology
,
Demagnetization
2024
High-precision searches for an electric dipole moment of the neutron (nEDM) require stable and uniform magnetic field environments. We present the recent achievements of degaussing and equilibrating the magnetically shielded room (MSR) for the n2EDM experiment at the Paul Scherrer Institute. We present the final degaussing configuration that will be used for n2EDM after numerous studies. The optimized procedure results in a residual magnetic field that has been reduced by a factor of two. The ultra-low field is achieved with the full magnetic-field-coil system, and a large vacuum vessel installed, both in the MSR. In the inner volume of
∼
1.4
m
3
, the field is now more uniform and below 300 pT. In addition, the procedure is faster and dissipates less heat into the magnetic environment, which in turn, reduces its thermal relaxation time from
12
h
down to
1.5
h
.
Journal Article
A large ‘Active Magnetic Shield’ for a high-precision experiment
by
Lauss, B.
,
Bouillaud, T.
,
Severijns, N.
in
Astronomy
,
Astrophysics and Cosmology
,
Elementary Particles
2023
We present a novel Active Magnetic Shield (AMS), designed and implemented for the n2EDM experiment at the Paul Scherrer Institute. The experiment will perform a high-sensitivity search for the electric dipole moment of the neutron. Magnetic-field stability and control is of key importance for n2EDM. A large, cubic, 5 m side length, magnetically shielded room (MSR) provides a passive, quasi-static shielding-factor of about
10
5
for its inner sensitive volume. The AMS consists of a system of eight complex, feedback-controlled compensation coils constructed on an irregular grid spanned on a volume of less than 1000 m
3
around the MSR. The AMS is designed to provide a stable and uniform magnetic-field environment around the MSR, while being reasonably compact. The system can compensate static and variable magnetic fields up to
±
50
μ
T
(homogeneous components) and
±
5
μ
T/m
(first-order gradients), suppressing them to a few
μ
T
in the sub-Hertz frequency range. The presented design concept and implementation of the AMS fulfills the requirements of the n2EDM experiment and can be useful for other applications, where magnetically silent environments are important and spatial constraints inhibit simpler geometrical solutions.
Journal Article
Search for an interaction mediated by axion-like particles with ultracold neutrons at the PSI
by
Pais, D
,
Svirina, K
,
Piegsa, F M
in
axion
,
axion-like particle
,
beyond Standard Model physics
2023
We report on a search for a new, short-range, spin-dependent interaction using a modified version of the experimental apparatus used to measure the permanent neutron electric dipole moment at the Paul Scherrer Institute. This interaction, which could be mediated by axion-like particles, concerned the unpolarized nucleons (protons and neutrons) near the material surfaces of the apparatus and polarized ultracold neutrons stored in vacuum. The dominant systematic uncertainty resulting from magnetic-field gradients was controlled to an unprecedented level of approximately 4 pT cm −1 using an array of optically-pumped cesium vapor magnetometers and magnetic-field maps independently recorded using a dedicated measurement device. No signature of a theoretically predicted new interaction was found, and we set a new limit on the product of the scalar and the pseudoscalar couplings g s g p λ 2 < 8.3 × 10 − 28 m 2 (95% C.L.) in a range of 5 µ m < λ < 25 mm for the monopole–dipole interaction. This new result confirms and improves our previous limit by a factor of 2.7 and provides the current tightest limit obtained with free neutrons.
Journal Article
A large 'Active Magnetic Shield' for a high-precision experiment
2023
We present a novel Active Magnetic Shield (AMS), designed and implemented for the n2EDM experiment at the Paul Scherrer Institute. The experiment will perform a high-sensitivity search for the electric dipole moment of the neutron. Magnetic-field stability and control is of key importance for n2EDM. A large, cubic, 5 m side length, magnetically shielded room (MSR) provides a passive, quasi-static shielding-factor of about [Formula omitted] for its inner sensitive volume. The AMS consists of a system of eight complex, feedback-controlled compensation coils constructed on an irregular grid spanned on a volume of less than 1000 m [Formula omitted] around the MSR. The AMS is designed to provide a stable and uniform magnetic-field environment around the MSR, while being reasonably compact. The system can compensate static and variable magnetic fields up to [Formula omitted] (homogeneous components) and [Formula omitted] (first-order gradients), suppressing them to a few [Formula omitted] in the sub-Hertz frequency range. The presented design concept and implementation of the AMS fulfills the requirements of the n2EDM experiment and can be useful for other applications, where magnetically silent environments are important and spatial constraints inhibit simpler geometrical solutions.
Journal Article
The design of the n2EDM experiment
2021
We present the design of a next-generation experiment, n2EDM, currently under construction at the ultracold neutron source at the Paul Scherrer Institute (PSI) with the aim of carrying out a high-precision search for an electric dipole moment of the neutron. The project builds on experience gained with the previous apparatus operated at PSI until 2017, and is expected to deliver an order of magnitude better sensitivity with provision for further substantial improvements. An overview is of the experimental method and setup is given, the sensitivity requirements for the apparatus are derived, and its technical design is described.
Journal Article
Nuclear structure with radioactive muonic atoms
2018
Muonic atoms have been used to extract the most accurate nuclear charge radii based on the detection of X-rays from the muonic cascades. Most stable and a few unstable isotopes have been investigated with muonic atom spectroscopy techniques. A new research project recently started at the Paul Scherrer Institut aims to extend the highresolution muonic atom spectroscopy for the precise determination of nuclear charge radii and other nuclear structure properties of radioactive isotopes. The challenge to combine the high-energy muon beam with small quantity of stopping mass is being addressed by developing the concept of stopping the muon in a high-density, a high-pressure hydrogen cell and subsequent transfer of the muon to the element of interest. Status and perspectives of the project will be presented.
Journal Article
Statistical sensitivity of the nEDM apparatus at PSI to n − n ′ oscillations
2019
The neutron and its hypothetical mirror counterpart, a sterile state degenerate in mass, could spontaneously mix in a process much faster than the neutron β-decay. Two groups have performed a series of experiments in search of neutron – mirror-neutron ( n − n ′) oscillations. They reported no evidence, thereby setting stringent limits on the oscillation time τ nn ′ . Later, these data sets have been further analyzed by Berezhiani et al.(2009–2017), and signals, compatible with n − n ′ oscillations in the presence of mirror magnetic fields, have been reported. The Neutron Electric Dipole Moment Collaboration based at the Paul Scherrer Institute performed a new series of experiments to further test these signals. In this paper, we describe and motivate our choice of run configurations with an optimal filling time of 29 s, storage times of 180 s and 380 s, and applied magnetic fields of 10 μT and 20 μT. The choice of these run configurations ensures a reliable overlap in settings with the previous efforts and also improves the sensitivity to test the signals. We also elaborate on the technique of normalizing the neutron counts, making such a counting experiment at the ultra-cold neutron source at the Paul Scherrer Institute possible. Furthermore, the magnetic field characterization to meet the requirements of this n − n ′ oscillation search is demonstrated. Finally, we show that this effort has a statistical sensitivity to n − n ′ oscillations comparable to the current leading constraints for B ′ = 0.
Journal Article
Production of lanthanide molecular ion beams by fluorination technique
2016
Systematic off-line fluorination studies on all the stable lanthanide isotopes have been performed. The results are presented as a function of various parameters such as the target temperature, the type of ion source used (hot plasma or surface ionization) and the quantity of CF4 introduced. The first on-line measurements allowed us to determine the optimal experimental conditions for producing radioactive lanthanide isotopes.
Journal Article