Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
4
result(s) for
"Roceri, M."
Sort by:
Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway
2013
During ageing skeletal muscles undergo a process of structural and functional remodelling that leads to sarcopenia, a syndrome characterized by loss of muscle mass and force and a major cause of physical frailty. To determine the causes of sarcopenia and identify potential targets for interventions aimed at mitigating ageing-dependent muscle wasting, we focussed on the main signalling pathway known to control protein turnover in skeletal muscle, consisting of the insulin-like growth factor 1 (IGF1), the kinase Akt and its downstream effectors, the mammalian target of rapamycin (mTOR) and the transcription factor FoxO. Expression analyses at the transcript and protein level, carried out on well-characterized cohorts of young, old sedentary and old active individuals and on mice aged 200, 500 and 800 days, revealed only modest age-related differences in this pathway. Our findings suggest that during ageing there is no downregulation of IGF1/Akt pathway and that sarcopenia is not due to FoxO activation and upregulation of the proteolytic systems. A potentially interesting result was the increased phosphorylation of the ribosomal protein S6, indicative of increased activation of mTOR complex1 (mTORC1), in aged mice. This result may provide the rationale why rapamycin treatment and caloric restriction promote longevity, since both interventions blunt activation of mTORC1; however, this change was not statistically significant in humans. Finally, genetic perturbation of these pathways in old mice aimed at promoting muscle hypertrophy via Akt overexpression or preventing muscle loss through inactivation of the ubiquitin ligase atrogin1 were found to paradoxically cause muscle pathology and reduce lifespan, suggesting that drastic activation of the IGF1-Akt pathway may be counterproductive, and that sarcopenia is accelerated, not delayed, when protein degradation pathways are impaired.
Journal Article
Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus
by
Riva, M A
,
Racagni, G
,
Roceri, M
in
Adult and adolescent clinical studies
,
Animals
,
Biological and medical sciences
2002
It is well accepted that events that interfere with the normal program of neuronal differentiation and brain maturation may be relevant for the etiology of psychiatric disorders, setting the stage for synaptic disorganization that becomes functional later in life. In order to investigate molecular determinants for these events, we examined the modulation of the neurotrophin brain-derived neurotrophic factor (BDNF) and the glutamate NMDA receptor following 24 h maternal separation (MD) on postnatal day 9. We found that in adulthood the expression of BDNF as well as of NR-2A and NR-2B, two NMDA receptor forming subunits, were significantly reduced in the hippocampus of MD rats whereas, among other structures, a slight reduction of NR-2A and 2B was detected only in prefrontal cortex. These changes were not observed acutely, nor in pre-weaning animals. Furthermore we found that in MD rats the modulation of hippocampal BDNF in response to an acute stress was altered, indicating a persistent functional impairment in its regulation, which may subserve a specific role for coping with challenging situations. We propose that adverse events taking place during brain maturation can modulate the expression of molecular players of cellular plasticity within selected brain regions, thus contributing to permanent alterations in brain function, which might ultimately lead to an increased vulnerability for psychiatric diseases.
Journal Article
Pro-Inflammatory Properties of Salivary Gland-Derived Fibroblasts—Implications in Sjögren’s Disease
by
Jahnke, Laura
,
Klein, Kerstin
,
Bruggmann, Rémy
in
Analysis
,
Autoimmune diseases
,
Biological response modifiers
2025
Salivary gland dysfunction is a hallmark of Sjögren’s disease (SjD). Here, we investigated the pro-inflammatory properties of salivary gland-derived fibroblasts (SGF) that were cultured from minor salivary gland (MSG) tissues of patients with SjD and controls. SGF from patients with SjD exhibited higher rates of proliferation compared to controls. RNA sequencing revealed pronounced pro-inflammatory properties of SGF in response to stimulation with IL1 and polyI:C, with an activation of “interferon responses”, “JAK STAT”, and “NF-kappa B” signaling, as well as ”complement” pathways. In addition to encoding pro-inflammatory transcripts, stimulated SGF featured increased expression of a number of non-coding enhancer RNAs (eRNAs) that we originally identified in TNF-stimulated synovial fibroblasts (FLS) by CAGE sequencing. We confirmed the expression of selected eRNAs in SGF and FLS through time-course experiments upon stimulation with different pro-inflammatory stimuli using real-time PCR. Furthermore, we detected eRNAs for IL6 (eIL6) and IL8 (eIL8#3) in MSG tissues. Treatment of SGF with the bromodomain inhibitor I-BET suppressed IL1- and LPS-induced expression of all eRNAs tested, as well as their associated pro-inflammatory coding transcripts. Transfection of SGF with antisense nucleotides targeting eCCL20 reduced the LPS-induced expression of this eRNA, as well as CCL20 expression and secretion. Together, our data highlight similarities between SGF and FLS regarding their activation under inflammatory conditions.
Journal Article