Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
183 result(s) for "Rodon Jordi"
Sort by:
Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial
Precision medicine focuses on DNA abnormalities, but not all tumors have tractable genomic alterations. The WINTHER trial (NCT01856296) navigated patients to therapy on the basis of fresh biopsy-derived DNA sequencing (arm A; 236 gene panel) or RNA expression (arm B; comparing tumor to normal). The clinical management committee (investigators from five countries) recommended therapies, prioritizing genomic matches; physicians determined the therapy given. Matching scores were calculated post-hoc for each patient, according to drugs received: for DNA, the number of alterations matched divided by the total alteration number; for RNA, expression-matched drug ranks. Overall, 303 patients consented; 107 (35%; 69 in arm A and 38 in arm B) were evaluable for therapy. The median number of previous therapies was three. The most common diagnoses were colon, head and neck, and lung cancers. Among the 107 patients, the rate of stable disease ≥6 months and partial or complete response was 26.2% (arm A: 23.2%; arm B: 31.6% (P = 0.37)). The patient proportion with WINTHER versus previous therapy progression-free survival ratio of >1.5 was 22.4%, which did not meet the pre-specified primary end point. Fewer previous therapies, better performance status and higher matching score correlated with longer progression-free survival (all P < 0.05, multivariate). Our study shows that genomic and transcriptomic profiling are both useful for improving therapy recommendations and patient outcome, and expands personalized cancer treatment.Prospective analysis of transcriptomic and genomic alterations increases the proportion of patients with solid cancer who are eligible for receiving matched therapies and shows promise in improving clinical outcomes.
Development of PI3K inhibitors: lessons learned from early clinical trials
Agents targeting the PI3K/AKT/mTOR pathway have been shown to be safe and effective in treating a number of tumour types. This Review outlines the background to these inhibitors and discusses the second-generation inhibitors of this pathway. The authors propose that the way forward for the development of inhibitors of the PI3K/AKT/mTOR pathway might be a systems biology approach and biomarker-driven studies. The phosphatidylinositol 3-kinase (PI3K) pathway has an important role in cell metabolism, growth, migration, survival and angiogenesis. Drug development aimed at targetable genetic aberrations in the PI3K/AKT/mTOR pathway has been fomented by observations that alterations in this pathway induce tumour formation and that inappropriate PI3K signalling is a frequent occurrence in human cancer. Many of the agents developed have been evaluated in early stage clinical trials. This Review focuses on early clinical and translational data related to inhibitors of the PI3K/AKT/mTOR pathway, as these data will likely guide the further clinical development of such agents. We review data from those trials, delineating the safety profile of the agents—whether observed sequelae could be mechanism-based or off-target effects—and drug efficacy. We describe predictive biomarkers explored in clinical trials and preclinical mechanisms of resistance. We also discuss key unresolved translational questions related to the clinical development of inhibitors of the PI3K/AKT/mTOR pathway and propose designs for biomarker-driven trials to address those issues. Key Points Agents targeting different components of the PI3K/AKT/mTOR pathway have been shown to be safe and well tolerated These agents inhibit the PI3K/AKT/mTOR pathway at recommended doses, and are effective in multiple tumour types No clear correlation among tumour type, genotype and sensitivity to inhibitors of the PI3K/AKT/mTOR pathway has emerged in initial clinical trials of second-generation inhibitors Some unsolved questions in the late development of inhibitors of the PI3K/AKT/mTOR pathway might benefit from a systems biology approach and from biomarker-driven studies
Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations
While tumor genome sequencing has become widely available in clinical and research settings, the interpretation of tumor somatic variants remains an important bottleneck. Here we present the Cancer Genome Interpreter, a versatile platform that automates the interpretation of newly sequenced cancer genomes, annotating the potential of alterations detected in tumors to act as drivers and their possible effect on treatment response. The results are organized in different levels of evidence according to current knowledge, which we envision can support a broad range of oncology use cases. The resource is publicly available at http://www.cancergenomeinterpreter.org .
Detection of SARS-CoV-2 in a cat owned by a COVID-19–affected patient in Spain
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, is considered a zoonotic pathogen mainly transmitted human to human. Few reports indicate that pets may be exposed to the virus. The present report describes a cat suffering from severe respiratory distress and thrombocytopenia living with a family with several members affected by COVID-19. Clinical signs of the cat prompted humanitarian euthanasia and a detailed postmortem investigation to assess whether a COVID-19–like disease was causing the condition. Necropsy results showed the animal suffered from feline hypertrophic cardiomyopathy and severe pulmonary edema and thrombosis. SARS-CoV-2 RNA was only detected in nasal swab, nasal turbinates, and mesenteric lymph node, but no evidence of histopathological lesions compatible with a viral infection were detected. The cat seroconverted against SARS-CoV-2, further evidencing a productive infection in this animal. We conclude that the animal had a subclinical SARS-CoV-2 infection concomitant to an unrelated cardiomyopathy that led to euthanasia.
9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy
Immune checkpoint therapy (ICT) provides substantial clinical benefits to cancer patients, but a large proportion of cancers do not respond to ICT. To date, the genomic underpinnings of primary resistance to ICT remain elusive. Here, we performed immunogenomic analysis of data from TCGA and clinical trials of anti-PD-1/PD-L1 therapy, with a particular focus on homozygous deletion of 9p21.3 (9p21 loss), one of the most frequent genomic defects occurring in ~13% of all cancers. We demonstrate that 9p21 loss confers “cold” tumor-immune phenotypes, characterized by reduced abundance of tumor-infiltrating leukocytes (TILs), particularly, T/B/NK cells, altered spatial TILs patterns, diminished immune cell trafficking/activation, decreased rate of PD-L1 positivity, along with activation of immunosuppressive signaling. Notably, patients with 9p21 loss exhibited significantly lower response rates to ICT and worse outcomes, which were corroborated in eight ICT trials of >1,000 patients. Further, 9p21 loss synergizes with PD-L1/TMB for patient stratification. A “response score” was derived by incorporating 9p21 loss, PD-L1 expression and TMB levels in pre-treatment tumors, which outperforms PD-L1, TMB, and their combination in identifying patients with high likelihood of achieving sustained response from otherwise non-responders. Moreover, we describe potential druggable targets in 9p21-loss tumors, which could be exploited to design rational therapeutic interventions. The molecular mechanisms of resistance to immune checkpoint therapy remain elusive. Here, the authors perform immunogenomic analysis of TCGA data and data from clinical trials for antiPD-1/PD-L1 therapy and highlight the association of 9p21 loss with a cold tumor microenvironment and resistance to therapy.
Methylthioadenosine Phosphorylase Genomic Loss in Advanced Gastrointestinal Cancers
Abstract Background One of the most common sporadic homozygous deletions in cancers is 9p21 loss, which includes the genes methylthioadenosine phosphorylase (MTAP), CDKN2A, and CDKN2B, and has been correlated with worsened outcomes and immunotherapy resistance. MTAP-loss is a developing drug target through synthetic lethality with MAT2A and PMRT5 inhibitors. The purpose of this study is to investigate the prevalence and genomic landscape of MTAP-loss in advanced gastrointestinal (GI) tumors and investigate its role as a prognostic biomarker. Materials and Methods We performed next-generation sequencing and comparative genomic and clinical analysis on an extensive cohort of 64 860 tumors comprising 5 GI cancers. We compared the clinical outcomes of patients with GI cancer harboring MTAP-loss and MTAP-intact tumors in a retrospective study. Results The prevalence of MTAP-loss in GI cancers is 8.30%. MTAP-loss was most prevalent in pancreatic ductal adenocarcinoma (PDAC) at 21.7% and least in colorectal carcinoma (CRC) at 1.1%. MTAP-loss tumors were more prevalent in East Asian patients with PDAC (4.4% vs 3.2%, P = .005) or intrahepatic cholangiocarcinoma (IHCC; 6.4% vs 4.3%, P = .036). Significant differences in the prevalence of potentially targetable genomic alterations (ATM, BRAF, BRCA2, ERBB2, IDH1, PIK3CA, and PTEN) were observed in MTAP-loss tumors and varied according to tumor type. MTAP-loss PDAC, IHCC, and CRC had a lower prevalence of microsatellite instability or elevated tumor mutational burden. Positive PD-L1 tumor cell expression was less frequent among MTAP-loss versus MTAP-intact IHCC tumors (23.2% vs 31.2%, P = .017). Conclusion In GI cancers, MTAP-loss occurs as part of 9p21 loss and has an overall prevalence of 8%. MTAP-loss occurs in 22% of PDAC, 15% of IHCC, 8.7% of gastroesophageal adenocarcinoma, 2.4% of hepatocellular carcinoma, and 1.1% of CRC and is not mutually exclusive with other targetable mutations. Methylthioadenosine phosphorylase (MTAP)-loss is a developing drug target through synthetic lethality with MAT2A and PMRT5 inhibitors. This study investigated the prevalence and genomic landscape of MTAP-loss in advanced gastrointestinal tumors and its role as a prognostic biomarker.
New clinical trial designs in the era of precision medicine
Cancer treatment has made significant strides towards the promise of personalized medicine. Recent scientific advances have shown that there are numerous genetic deregulations that are common in multiple cancer types, raising the possibility of developing drugs targeting those deregulations irrespective of the tumour type. Precision Cancer Medicine (PCM) was born out of accumulated evidence matching targeted agents with these tumour molecular deregulations. At the same time, the therapeutic armamentarium is rapidly increasing and the number of new drugs (including immune‐oncology agents) entering drug development continues to rise. These factors, added to strong collaboration with regulatory agencies, which have approved novel agents based on data obtained from phase 1/2 trials, have led to unprecedented evolution in the design of early‐stage clinical trials. Currently, we have seen rapid phase 1 dose‐escalation trials followed by remarkably large expansion cohorts, and are witnessing the emergence of new trials, such as adaptive studies with basket and umbrella designs aimed at optimizing the biomarker–drug co‐development process. Alongside the growing complexity of these clinical trials, new frameworks for stronger and faster collaboration between all stakeholders in drug development, including academic institutions and frameworks, clinicians, pharma companies and regulatory agencies, have been established. In this review article, we describe the main challenges and opportunities that these new trial designs may provide for a more efficient drug development process, which may ultimately help ensure that PCM becomes a reality for patients. New clinical trial designs are helping optimize early drug development. An umbrella trial is a master protocol for which the patient's eligibility is defined by the presence of a tumour type that is substratified according to specific molecular alterations matched to different anticancer therapies. Basket trials include patients with different tumour types with a common molecular alteration who are treated with the same matched therapy.
Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma
SummaryPurpose Galunisertib, a TGF-β inhibitor, has demonstrated antitumor effects in preclinical and radiographic responses in some patients with malignant glioma. This Phase 1b/2a trial investigated the clinical benefit of combining galunisertib with temozolomide-based radiochemotherapy (TMZ/RTX) in patients with newly diagnosed malignant glioma (NCT01220271). Methods This is an open-label, 2-arm Phase 1b/2a study (N = 56) of galunisertib (intermittent dosing: 14 days on/14 days off per cycle of 28 days) in combination with TMZ/RTX (n = 40), versus a control arm (TMZ/RTX, n = 16). The primary objective of Phase 1b was to determine the safe and tolerable Phase 2 dose of galunisertib. The primary objective of Phase 2a was to confirm the tolerability and pharmacodynamic profile of galunisertib with TMZ/RTX, and the secondary objectives included determining the efficacy and pharmacokinetic (PK) profile of galunisertib with TMZ/RTX in patients with glioblastoma. This study also characterized the changes in the major T-cell subsets during TMZ/RTX plus galunisertib treatment. Results In the Phase 2a study, efficacy results for patients treated with galunisertib plus TMZ/RTX or TMZ/RTX were: median overall survival (18.2 vs 17.9 months), median progression-free survival (7.6 vs 11.5 months), and disease control rate (80% [32/40] vs 56% [9/16] patients) respectively. PK profile of galunisertib plus TMZ/RTX regimen was consistent with previously published PK data of galunisertib. The overall safety profile across treatment arms was comparable. Conclusion No differences in efficacy, safety or pharmacokinetic variables were observed between the two treatment arms.
Phase II Clinical Trial of Pembrolizumab in Patients with Progressive Metastatic Pheochromocytomas and Paragangliomas
Metastatic pheochromocytomas and paragangliomas (MPPGs) are rare endocrine malignancies that are associated with high rates of morbidity and mortality because of their large tumor burden and location, progression, and release of catecholamines. Systemic therapies for MPPGs are limited. MPPGs are characterized by pseudohypoxia that may prevent immune system recognition. We conducted a phase II clinical trial of pembrolizumab in patients with progressive MPPGs. The primary endpoint was the non-progression rate at 27 weeks. The secondary endpoints included the objective response and clinical benefit rates, progression free and overall survival duration, and safety. We also determined whether PDL-1 expression and the presence of infiltrating mononuclear inflammatory cells in the primary tumor were associated with clinical response and hereditary background. Eleven patients were included in this trial, four (36%) with germline mutations and seven (64%) with hormonally active tumors. Four patients (40%, 95% confidence interval (CI) 12–74%) achieved the primary endpoint. The objective response rate was 9% (95% CI: 0–41%). The clinical benefit rate was 73% (95% CI: 39–94%). Four patients had grade 3 adverse events related to pembrolizumab. No patients experienced grade 4 or 5 adverse events or a catecholamine crisis. Progression free survival time was 5.7 months (95% CI: 4.37—not reached). The median survival duration was 19 months (95% CI: 9.9—not reached). PDL-1 expression and the presence of infiltrating mononuclear inflammatory cells in the primary tumor did not seem to be associated with disease response. Single-agent pembrolizumab has modest treatment efficacy in patients with progressive MPPGs. Positive responses seemed to be independent of patients’ hereditary backgrounds, tumor hormonal status, and the presence of infiltrating mononuclear inflammatory cells or PDL-1 expression in the primary tumor.
Efficacy of futibatinib, an irreversible fibroblast growth factor receptor inhibitor, in FGFR-altered breast cancer
Several alterations in fibroblast growth factor receptor (FGFR) genes have been found in breast cancer; however, they have not been well characterized as therapeutic targets. Futibatinib (TAS-120; Taiho) is a novel, selective, pan-FGFR inhibitor that inhibits FGFR1-4 at nanomolar concentrations. We sought to determine futibatinib’s efficacy in breast cancer models. Nine breast cancer patient–derived xenografts (PDXs) with various FGFR1-4 alterations and expression levels were treated with futibatinib. Antitumor efficacy was evaluated by change in tumor volume and time to tumor doubling. Alterations indicating sensitization to futibatinib in vivo were further characterized in vitro . FGFR gene expression between patient tumors and matching PDXs was significantly correlated; however, overall PDXs had higher FGFR3-4 expression. Futibatinib inhibited tumor growth in 3 of 9 PDXs, with tumor stabilization in an FGFR2 -amplified model and prolonged regression (> 110 days) in an FGFR2 Y375C mutant/amplified model. FGFR2 overexpression and, to a greater extent, FGFR2 Y375C expression in MCF10A cells enhanced cell growth and sensitivity to futibatinib. Per institutional and public databases, FGFR2 mutations and amplifications had a population frequency of 1.1%–2.6% and 1.5%–2.5%, respectively, in breast cancer patients. FGFR2 alterations in breast cancer may represent infrequent but highly promising targets for futibatinib.