Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
79 result(s) for "Rodríguez Herrera, Bernal"
Sort by:
Genetic Diversity of Bartonella spp. in Cave-Dwelling Bats and Bat Flies, Costa Rica, 2018
To determine Bartonella spp. dynamics, we sampled bats and bat flies across 15 roosts in Costa Rica. PCR indicated prevalence of 10.7% in bats and 29.0% in ectoparasite pools. Phylogenetic analysis of 8 sequences from bats and 5 from bat fly pools revealed 11 distinct genetic variants, including 2 potentially new genotypes.
The masked seducers: Lek courtship behavior in the wrinkle-faced bat Centurio senex (Phyllostomidae)
Centurio senex is an iconic bat characterized by a facial morphology deviating far from all other New World Leaf Nosed Bats (Phyllostomidae). The species has a bizarrely wrinkled face and lacks the characteristic nose leaf. Throughout its distribution from Mexico to Northern South America the species is most of the time rarely captured and only scarce information on its behavior and natural history is available. Centurio senex is frugivorous and one of the few bats documented to consume also hard seeds. Interestingly, the species shows a distinct sexual dimorphism: Adult males have more pronounced facial wrinkles than females and a fold of skin under the chin that can be raised in style of a face mask. We report the first observations on echolocation and mating behavior of Centurio senex , including synchronized audio and video recordings from an aggregation of males in Costa Rica. Over a period of 6 weeks we located a total of 53 perches, where during the first half of the night males were hanging with raised facial masks at a mean height of 2.35 m. Most of the time, the males moved just their wing tips, and spontaneously vocalized in the ultrasound range. Approaches of other individuals resulted in the perching male beating its wings and emitting a very loud, low frequency whistling call. Following such an encounter we recorded a copulation event. The observed aggregation of adult C . senex males is consistent with lek courtship, a behavior described from only few other bat species.
Wing morphology predicts individual niche specialization in Pteronotus mesoamericanus (Mammalia: Chiroptera)
Morphological variation between individuals can increase niche segregation and decrease intraspecific competition when heterogeneous individuals explore their environment in different ways. Among bat species, wing shape correlates with flight maneuverability and habitat use, with species that possess broader wings typically foraging in more cluttered habitats. However, few studies have investigated the role of morphological variation in bats for niche partitioning at the individual level. To determine the relationship between wing shape and diet, we studied a population of the insectivorous bat species Pteronotus mesoamericanus in the dry forest of Costa Rica. Individual diet was resolved using DNA metabarcoding, and bat wing shape was assessed using geometric morphometric analysis. Inter-individual variation in wing shape showed a significant relationship with both dietary dissimilarity based on Bray-Curtis estimates, and nestedness derived from an ecological network. Individual bats with broader and more rounded wings were found to feed on a greater diversity of arthropods (less nested) in comparison to individuals with triangular and pointed wings (more nested). We conclude that individual variation in bat wing morphology can impact foraging efficiency leading to the observed overall patterns of diet specialization and differentiation within the population.
Systematics and diversification of the Ichthyomyini (Cricetidae, Sigmodontinae) revisited: evidence from molecular, morphological, and combined approaches
Ichthyomyini, a morphologically distinctive group of Neotropical cricetid rodents, lacks an integrative study of its systematics and biogeography. Since this tribe is a crucial element of the Sigmodontinae, the most speciose subfamily of the Cricetidae, we conducted a study that includes most of its recognized diversity (five genera and 19 species distributed from southern Mexico to northern Bolivia). For this report we analyzed a combined matrix composed of four molecular markers ( RBP3 , GHR , RAG1 , Cytb ) and 56 morphological traits, the latter including 15 external, 14 cranial, 19 dental, five soft-anatomical and three postcranial features. A variety of results were obtained, some of which are inconsistent with the currently accepted classification and understanding of the tribe. Ichthyomyini is retrieved as monophyletic, and it is divided into two main clades that are here recognized as subtribes: one to contain the genus Anotomys and the other composed by the remaining genera. Neusticomys (as currently recognized) was found to consist of two well supported clades, one of which corresponds to the original concept of Daptomys . Accordingly, we propose the resurrection of the latter as a valid genus to include several species from low to middle elevations and restrict Neusticomys to several highland forms. Numerous other revisions are necessary to reconcile the alpha taxonomy of ichthyomyines with our phylogenetic results, including placement of the Cajas Plateau water rat (formerly Chibchanomys orcesi ) in the genus Neusticomys ( sensu stricto ), and the recognition of at least two new species (one in Neusticomys , one in Daptomys ). Additional work is necessary to confirm other unanticipated results, such as the non-monophyletic nature of Rheomys and the presence of a possible new genus and species from Peru. Our results also suggest that ichthyomyines are one of the main Andean radiations of sigmodontine cricetids, with an evolutionary history dating to the Late Miocene and subsequent cladogenesis during the Pleistocene.
Frugivorous Bats Maintain Functional Habitat Connectivity in Agricultural Landscapes but Rely Strongly on Natural Forest Fragments
Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.
Neotropical bats that co-habit with humans function as dead-end hosts for dengue virus
Several studies have shown Dengue Virus (DENV) nucleic acids and/or antibodies present in Neotropical wildlife including bats, suggesting that some bat species may be susceptible to DENV infection. Here we aim to elucidate the role of house-roosting bats in the DENV transmission cycle. Bats were sampled in households located in high and low dengue incidence regions during rainy and dry seasons in Costa Rica. We captured 318 bats from 12 different species in 29 households. Necropsies were performed in 205 bats to analyze virus presence in heart, lung, spleen, liver, intestine, kidney, and brain tissue. Histopathology studies from all organs showed no significant findings of disease or infection. Sera were analyzed by PRNT90 for a seroprevalence of 21.2% (51/241), and by PCR for 8.8% (28/318) positive bats for DENV RNA. From these 28 bats, 11 intestine samples were analyzed by RT-PCR. Two intestines were DENV RNA positive for the same dengue serotype detected in blood. Viral isolation from all positive organs or blood was unsuccessful. Additionally, viral load analyses in positive blood samples by qRT-PCR showed virus concentrations under the minimal dose required for mosquito infection. Simultaneously, 651 mosquitoes were collected using EVS-CO2 traps and analyzed for DENV and feeding preferences (bat cytochrome b). Only three mosquitoes were found DENV positive and none was positive for bat cytochrome b. Our results suggest an accidental presence of DENV in bats probably caused from oral ingestion of infected mosquitoes. Phylogenetic analyses suggest also a spillover event from humans to bats. Therefore, we conclude that bats in these urban environments do not sustain DENV amplification, they do not have a role as reservoirs, but function as epidemiological dead end hosts for this virus.
The effect of local land use on aerial insectivorous bats (Chiroptera) within the two dominating crop types in the Northern-Caribbean lowlands of Costa Rica
Land transformation into agricultural areas and the intensification of management practices represent two of the most devastating threats to biodiversity worldwide. Within this study, we investigated the effect of intensively managed agroecosystems on bat activity and species composition within two focal areas differing in landscape structure. We sampled bats via acoustic monitoring and insects with flight interception traps in banana and pineapple monoculture plantations and two nearby protected forested areas within the area of Sarapiquí, Costa Rica. Our results revealed that general occurrence and feeding activity of bats was higher above plantations compared to forested areas. We also recorded higher species richness at recording sites in plantations. This trend was especially strong within a fragmented landscape, with only four species recorded in forests, but 12 above pineapple plantations. Several bat species, however, occurred only once or twice above plantations, and forest specialist species such as Centronycteris centralis, Myotis riparius and Pteronotus mesoamericanus were only recorded at forest sites. Our results indicated, that mostly mobile open space and edge foraging bat species can use plantations as potential foraging habitat and might even take advantage of temporal insect outbreaks. However, forests are vital refugia for several species, including slower flying forest specialists, and thus a prerequisite to safeguard bat diversity within agricultural dominated landscapes.
Social behaviour and vocalizations of the tent-roosting Honduran white bat
Bats are highly gregarious animals, displaying a large spectrum of social systems with different organizational structures. One important factor shaping sociality is group stability. To maintain group cohesion and stability, bats often rely on vocal communication. The Honduran white bat, Ectophylla alba , exhibits an unusual social structure compared to other tent-roosting species. This small white-furred bat lives in perennial stable mixed-sex groups. Tent construction requires several individuals and, as the only tent roosting species so far, involves both sexes. The bats´ social system and ecology render this species an interesting candidate to study social behaviour and vocal communication. In our study, we investigated the social behaviour and vocalizations of E . alba in the tent by observing two stable groups, including pups, in the wild. We documented 16 different behaviours, among others play and fur chewing, a behaviour presumably used for scent-marking. Moreover, we found 10 distinct social call types in addition to echolocation calls, and for seven call types we were able to identify the corresponding broad behavioural context. Most of the social call types were affiliative, including two types of contact calls, maternal directive calls, pup isolation calls and a call type related to the fur-chewing behaviour. In sum, this study entails an ethogram and describes the social vocalizations of a tent-roosting phyllostomid bat, providing the basis for further in-depth studies about the sociality and vocal communication in E . alba .
Notes on the geographic range and distribution of two free-tailed bat species (Chiroptera, Molossidae) in Costa Rica
Nyctinomops laticaudatus (É. Geoffroy St.-Hilaire, 1805) and Eumops nanus (Miller, 1900) are 2 species with distributions that are expected for Costa Rica. However, voucher specimens that confirm the presence of these species in the country are absent or missing in museum collections. Here we document voucher specimens and present data that confirm the presence of N. laticaudatus and E. nanus in Costa Rica.
Macro and Microhabitat Associations of the Peter's Tent-Roosting Bat (Uroderma bilobatum): Human-Induced Selection and Colonization?
Understanding species-specific habitat selection is essential to identify how natural systems are assembled and maintained, and how emerging natural and anthropogenic disturbances will affect ecosystem function. In the Neotropics, Peter's tent-roosting bat (Uroderma bilobatum), known to roost in forests, has become abundant in human-modified areas. To understand how habitat characteristics in both intact forest and human-modified areas influence the presence and density of U. bilobatum, we characterized habitat use at two scales (macrohabitat and microhabitat) and used logistic and poisson regressions to determine which habitat characteristics best predicted the presence and density of U. bilobatum within each scale. Moreover, we performed a redundancy analysis to determine which habitat scale explained more variation. As these bats are obligate tent roosters, we used tent as a surrogate for bat presence and density. We found that both macrohabitat and microhabitat scales explained variation in presence and density. Characteristics of the microhabitat scale, however, had higher predictive power, revealing that U. bilobatum preferentially inhabits areas with high density of coconut palms. Coconut palms were introduced recently in the Neotropics and are found only in human-modified areas. Therefore, we hypothesize that U. bilobatum is expanding its range into these areas following the expanded distribution of this exotic plant species.