Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
420
result(s) for
"Rodrigues, Ana Lúcia"
Sort by:
Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice
by
Gómez-Rangel, Vanessa
,
Buendia, Izaskun
,
Cuadrado, Antonio
in
Agmatine - pharmacology
,
Anhedonia - drug effects
,
Animal behavior
2016
Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (−/−)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine’s ability to produce an antidepressant-like effect was abolished in Nrf2 (−/−) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.
Journal Article
NLRP3 Inflammasome: From Pathophysiology to Therapeutic Target in Major Depressive Disorder
by
Kouba, Bruna R.
,
S. Rodrigues, Ana Lúcia
,
Gil-Mohapel, Joana
in
Antidepressive Agents - pharmacology
,
Antidepressive Agents - therapeutic use
,
Cytokines - metabolism
2022
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder, whose pathophysiology has been linked to the neuroinflammatory process. The increased activity of the Nod-like receptor pyrin containing protein 3 (NLRP3) inflammasome, an intracellular multiprotein complex, is intrinsically implicated in neuroinflammation by promoting the maturation and release of proinflammatory cytokines such as interleukin (IL)-1β and IL-18. Interestingly, individuals suffering from MDD have higher expression of NLRP3 inflammasome components and proinflammatory cytokines when compared to healthy individuals. In part, intense activation of the inflammasome may be related to autophagic impairment. Noteworthy, some conventional antidepressants induce autophagy, resulting in less activation of the NLRP3 inflammasome. In addition, the fast-acting antidepressant ketamine, some bioactive compounds and physical exercise have also been shown to have anti-inflammatory properties via inflammasome inhibition. Therefore, it is suggested that modulation of inflammasome-driven pathways may have an antidepressant effect. Here, we review the role of the NLRP3 inflammasome in the pathogenesis of MDD, highlighting that pathways related to its priming and activation are potential therapeutic targets for the treatment of MDD.
Journal Article
Molecular Basis Underlying the Therapeutic Potential of Vitamin D for the Treatment of Depression and Anxiety
by
Rodrigues, Ana Lúcia S.
,
Kouba, Bruna R.
,
Gil-Mohapel, Joana
in
Antidepressants
,
Antioxidants
,
Anxiety disorders
2022
Major depressive disorder and anxiety disorders are common and disabling conditions that affect millions of people worldwide. Despite being different disorders, symptoms of depression and anxiety frequently overlap in individuals, making them difficult to diagnose and treat adequately. Therefore, compounds capable of exerting beneficial effects against both disorders are of special interest. Noteworthily, vitamin D deficiency has been associated with an increased risk of developing depression and anxiety, and individuals with these psychiatric conditions have low serum levels of this vitamin. Indeed, in the last few years, vitamin D has gained attention for its many functions that go beyond its effects on calcium–phosphorus metabolism. Particularly, antioxidant, anti-inflammatory, pro-neurogenic, and neuromodulatory properties seem to contribute to its antidepressant and anxiolytic effects. Therefore, in this review, we highlight the main mechanisms that may underlie the potential antidepressant and anxiolytic effects of vitamin D. In addition, we discuss preclinical and clinical studies that support the therapeutic potential of this vitamin for the management of these disorders.
Journal Article
Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets
by
Rodrigues, Ana Lúcia S.
,
Kouba, Bruna R.
,
de Araujo Borba, Laura
in
Agmatine
,
Anti-Inflammatory Agents - therapeutic use
,
anti-inflammatory approaches
2024
The involvement of central and peripheral inflammation in the pathogenesis and prognosis of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflammatory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants, physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are necessary to explore the therapeutic benefits of these alternative therapies for MDD.
Journal Article
Therapeutic Potential of Ursolic Acid to Manage Neurodegenerative and Psychiatric Diseases
by
Rodrigues, Ana Lúcia S.
,
Kaster, Manuella P.
,
Pazini, Francis L.
in
Alzheimer's disease
,
Amyloid
,
Animal models
2017
Ursolic acid is a pentacyclic triterpenoid found in several plants. Despite its initial use as a pharmacologically inactive emulsifier in pharmaceutical, cosmetic and food industries, several biological activities have been reported for this compound so far, including anti-tumoural, anti-diabetic, cardioprotective and hepatoprotective properties. The biological effects of ursolic acid have been evaluated in vitro, in different cell types and against several toxic insults (i.e. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, amyloid-β peptides, kainic acid and others); in animal models of brain-related disorders (Alzheimer disease, Parkinson disease, depression, traumatic brain injury) and ageing; and in clinical studies with cancer patients and for muscle atrophy. Most of the protective effects of ursolic acid are related to its ability to prevent oxidative damage and excessive inflammation, common mechanisms associated with multiple brain disorders. Additionally, ursolic acid is capable of modulating the monoaminergic system, an effect that might be involved in its ability to prevent mood and cognitive dysfunctions associated with neurodegenerative and psychiatric conditions. This review presents and discusses the available evidence of the possible beneficial effects of ursolic acid for the management of neurodegenerative and psychiatric disorders. We also discuss the chemical features, major sources and potential limitations of the use of ursolic acid as a pharmacological treatment for brain-related diseases.
Journal Article
Creatine, Similar to Ketamine, Counteracts Depressive-Like Behavior Induced by Corticosterone via PI3K/Akt/mTOR Pathway
by
Colla, André R. S.
,
Rodrigues, Ana Lúcia S.
,
Oliveira, Ágatha
in
Animals
,
Antidepressive Agents - pharmacology
,
Antidepressive Agents - therapeutic use
2016
Ketamine has emerged as a novel strategy to treat refractory depression, producing rapid remission, but elicits some side effects that limit its use. In an attempt to investigate a safer compound that may afford an antidepressant effect similar to ketamine, this study examined the effects of the ergogenic compound creatine in a model of depression, and the involvement of phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in its effect. In order to induce a depressive-like behavior, mice were administered with corticosterone (20 mg/kg, per os (p.o.)) for 21 days. This treatment increased immobility time in the tail suspension test (TST), an effect abolished by a single administration of creatine (10 mg/kg, p.o.) or ketamine (1 mg/kg, i.p.), but not by fluoxetine (10 mg/kg, p.o., conventional antidepressant). Treatment of mice with wortmannin (PI3K inhibitor, 0.1 μg/site, intracerebroventricular (i.c.v.)) or rapamycin (mTOR inhibitor, 0.2 nmol/site, i.c.v.) abolished the anti-immobility effect of creatine and ketamine. None of the treatments affected locomotor activity of mice. The immunocontents of p-mTOR, p-p70S6 kinase (p70S6K), and postsynaptic density-95 protein (PSD95) were increased by creatine and ketamine in corticosterone or vehicle-treated mice. Moreover, corticosterone-treated mice presented a decreased hippocampal brain-derived neurotrophic factor (BDNF) level, an effect abolished by creatine or ketamine. Altogether, the results indicate that creatine shares with ketamine the ability to acutely reverse the corticosterone-induced depressive-like behavior by a mechanism dependent on PI3K/AKT/mTOR pathway, and modulation of the synaptic protein PSD95 as well as BDNF in the hippocampus, indicating the relevance of targeting these proteins for the management of depressive disorders. Moreover, we suggest that creatine should be further investigated as a possible fast-acting antidepressant.
Journal Article
Potential Role of Vitamin D for the Management of Depression and Anxiety
by
Casseb, Gleicilaine A. S.
,
Rodrigues, Ana Lúcia S.
,
Kaster, Manuella P.
in
Anxiety
,
Anxiety disorders
,
Bioavailability
2019
Vitamin D, a fat-soluble vitamin, plays a role not only in calcium and phosphate homeostasis but also in several other functions, including cell growth and neuromuscular and immune function. The deficiency of vitamin D is highly prevalent throughout the world and has been suggested to be associated with an enhanced risk of major depressive disorder (MDD) and anxiety disorders. Therefore, vitamin D supplementation has been investigated for the prevention and treatment of these disorders. This review presents preclinical and clinical evidence of the effects of vitamin D supplementation in these disorders. Although preclinical studies provide limited evidence on the possible mechanisms underlying the beneficial effects of vitamin D for the management of these disorders, most of the clinical studies have indicated that vitamin D supplementation is associated with the reduction of symptoms of depression and anxiety, particularly when the supplementation was carried out in individuals with an MDD diagnosis (of the 13 studies in which MDD diagnosis was established, 12 had positive results with vitamin supplementation). However, some heterogeneity in the outcomes was observed and might be associated with an absence of overt psychiatric symptoms in several studies, genetic polymorphisms that alter vitamin D metabolism and bioavailability, differences in the supplementation regimen (monotherapy, adjunctive therapy, or large bolus dosing), and levels of 25-hydroxyvitamin D
3
(25(OH)D) at baseline (individuals with low vitamin D status may respond better) and attained after supplementation. Additionally, factors such as sex, age, and symptom severity also need to be further explored in relation to the effects of vitamin D. Therefore, although vitamin D may hold significant potential for mental health, further preclinical and clinical studies are clearly necessary to better understand its role on mood/affect modulation.
Journal Article
Low doses of ketamine and guanosine abrogate corticosterone-induced anxiety-related behavior, but not disturbances in the hippocampal NLRP3 inflammasome pathway
by
Rodrigues, Ana Lúcia
,
Anderson, Camargo
,
Rosa, Julia M
in
Antidepressants
,
Anxiety
,
Anxiolytics
2021
RationaleGuanosine has been shown to potentiate ketamine’s antidepressant-like actions, although its ability to augment the anxiolytic effect of ketamine remains to be determined.ObjectiveThis study investigated the anxiolytic-like effects of a single administration with low doses of ketamine and/or guanosine in mice subjected to chronic administration of corticosterone and the role of NLRP3-driven signaling.MethodsCorticosterone (20 mg/kg, p.o.) was administered for 21 days, followed by a single administration of ketamine (0.1 mg/kg, i.p.), guanosine (0.01 mg/kg, p.o.), or ketamine (0.1 mg/kg, i.p.) plus guanosine (0.01 mg/kg, p.o.). Anxiety-like behavior and NLRP3-related targets were analyzed 24 h following treatments.ResultsCorticosterone reduced the time spent in the open arms and the central zone in the elevated plus-maze test and open-field test, respectively. Corticosterone raised the number of unsupported rearings and the number and time of grooming, and decreased the latency to start grooming in the open-field test. Disturbances in regional distribution (increased rostral grooming) and grooming transitions (increased aborted and total incorrect transitions) were detected in corticosterone-treated mice. These behavioral alterations were accompanied by increased immunocontent of Iba-1, ASC, NLRP3, caspase-1, TXNIP, and IL-1β in the hippocampus, but not in the prefrontal cortex. The treatments with ketamine, guanosine, and ketamine plus guanosine were effective to counteract corticosterone-induced anxiety-like phenotype, but not disturbances in the hippocampal NLRP3 pathway.ConclusionsOur study provides novel evidence that low doses of ketamine and/or guanosine reverse corticosterone-induced anxiety-like behavior and shows that the NLRP3 inflammasome pathway is likely unrelated to this response.
Journal Article
Guanosine fast onset antidepressant-like effects in the olfactory bulbectomy mice model
by
Rodrigues, Ana Lúcia S.
,
de Almeida, Roberto Farina
,
Souza, Diogo O.
in
631/154/436
,
692/699/476/1414
,
Anhedonia - drug effects
2020
The treatment of major depressive disorder (MDD) is still a challenge. In the search for novel antidepressants, glutamatergic neuromodulators have been investigated as possible fast-acting antidepressants. Innovative studies suggest that the purine cycle and/or the purinergic signaling can be dysregulated in MDD, and the endogenous nucleoside guanosine has gained attention due to its extracellular effects. This study aimed to verify if guanosine produces fast-onset effects in the well-validated, reliable and sensitive olfactory bulbectomy (OBX) model of depression. The involvement of the mTOR pathway, a key target for the fast-onset effect of ketamine, was also investigated. Results show that a single i.p. injection of guanosine, or ketamine, completely reversed the OBX-induced anhedonic-like behavior 24 or 48 h post treatment, as well as the short-term recognition memory impairment 48 h post treatment. The antidepressant-like effects of guanosine and ketamine were completely abolished by rapamycin. This study shows, for the first time, that guanosine, in a way similar to ketamine, is able to elicit a fast antidepressant response in the OBX model in mice. The results support the notion that guanosine represents a new road for therapeutic improvement in MDD.
Journal Article
Exploring the Molecular Targets for the Antidepressant and Antisuicidal Effects of Ketamine Enantiomers by Using Network Pharmacology and Molecular Docking
by
Rodrigues, Ana Lúcia S.
,
Altê, Glorister A.
in
Antidepressants
,
arketamine
,
bioinformatical analysis
2023
Ketamine, a racemic mixture of esketamine (S-ketamine) and arketamine (R-ketamine), has received particular attention for its rapid antidepressant and antisuicidal effects. NMDA receptor inhibition has been indicated as one of the main mechanisms of action of the racemic mixture, but other pharmacological targets have also been proposed. This study aimed to explore the possible multiple targets of ketamine enantiomers related to their antidepressant and antisuicidal effects. To this end, targets were predicted using Swiss Target Prediction software for each ketamine enantiomer. Targets related to depression and suicide were collected by the Gene Cards database. The intersections of targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Network pharmacology analysis was performed using Gene Mania and Cytoscape software. Molecular docking was used to predict the main targets of the network. The results indicated that esketamine and arketamine share some biological targets, particularly NMDA receptor and phosphodiesterases 3A, 7A, and 5A but have specific molecular targets. While esketamine is predicted to interact with the GABAergic system, arketamine may interact with macrophage migration inhibitory factor (MIF). Both ketamine enantiomers activate neuroplasticity-related signaling pathways and show addiction potential. Our results identified novel, poorly explored molecular targets that may be related to the beneficial effects of esketamine and arketamine against depression and suicide.
Journal Article