Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Rodriguez, Mayra Z."
Sort by:
Clustering algorithms: A comparative approach
Many real-world systems can be studied in terms of pattern recognition tasks, so that proper use (and understanding) of machine learning methods in practical applications becomes essential. While many classification methods have been proposed, there is no consensus on which methods are more suitable for a given dataset. As a consequence, it is important to comprehensively compare methods in many possible scenarios. In this context, we performed a systematic comparison of 9 well-known clustering methods available in the R language assuming normally distributed data. In order to account for the many possible variations of data, we considered artificial datasets with several tunable properties (number of classes, separation between classes, etc). In addition, we also evaluated the sensitivity of the clustering methods with regard to their parameters configuration. The results revealed that, when considering the default configurations of the adopted methods, the spectral approach tended to present particularly good performance. We also found that the default configuration of the adopted implementations was not always accurate. In these cases, a simple approach based on random selection of parameters values proved to be a good alternative to improve the performance. All in all, the reported approach provides subsidies guiding the choice of clustering algorithms.
Clustering Algorithms: A Comparative Approach
Many real-world systems can be studied in terms of pattern recognition tasks, so that proper use (and understanding) of machine learning methods in practical applications becomes essential. While a myriad of classification methods have been proposed, there is no consensus on which methods are more suitable for a given dataset. As a consequence, it is important to comprehensively compare methods in many possible scenarios. In this context, we performed a systematic comparison of 7 well-known clustering methods available in the R language. In order to account for the many possible variations of data, we considered artificial datasets with several tunable properties (number of classes, separation between classes, etc). In addition, we also evaluated the sensitivity of the clustering methods with regard to their parameters configuration. The results revealed that, when considering the default configurations of the adopted methods, the spectral approach usually outperformed the other clustering algorithms. We also found that the default configuration of the adopted implementations was not accurate. In these cases, a simple approach based on random selection of parameters values proved to be a good alternative to improve the performance. All in all, the reported approach provides subsidies guiding the choice of clustering algorithms.
Production and Characterization of Biocomposite Films of Bacterial Cellulose from Kombucha and Coated with Chitosan
The purpose of this research is to produce and characterize bacterial cellulose (BC) films coated with chitosan (BC-CH). BC films were produced in a fermentation medium based on Camellia sinensis tea and dextrose (12 days at 25 °C) and subsequently treated with coating-forming solutions (CFSs) based on chitosan (BC-CH 0.5%, BC-CH 1.0%, and BC-CH 1.5%). As a result, the FTIR spectra of BC and BC-CH 1.5% showed the main characteristic bands of cellulose and chitosan. In the physicochemical characterization of the films, it was found that the incorporation of the chitosan coatings did not affect the thickness; however, it decreased the luminosity (L*) and increased redness (a*), yellowness (b*), and opacity (75.24%). Additionally, the light absorption properties in the UV-Vis range were improved. Furthermore, the application of the CFSs increased: the solubility (64.91%), the antimicrobial activity against S. aureus (6.55 mm) and E. coli (8.25 mm), as well as the antioxidant activity (57.71% and 24.57% free radical scavenging activity), and the content of total phenols (2.45 mg GAE/g). Finally, our results suggest that the BC-CH films developed in the present study show a potential application as active packaging material for food.
Comparison of Chemical Composition, Physicochemical Parameters, and Antioxidant and Antibacterial Activity of the Essential Oil of Cultivated and Wild Mexican Oregano Poliomintha longiflora Gray
Mexican oregano Poliomintha longiflora Gray located in the municipality of Higueras, Nuevo Leon, Mexico was collected during the autumn (September, OCO), winter (January, OCI) and summer (June, OCV) seasons, under cultivation conditions. It was also collected in wild conditions during the autumn (OSO). Essential oil (EO) was extracted from leaves and the color, refractive index and density were reported. The EO yield, antioxidant activity by ORAC assay, thymol and carvacrol concentration and antibacterial activity were statistically compared (p-value = 0.05). Among the various harvests, the highest EO yield, antioxidant activity, thymol and carvacrol content and antibacterial activity against Salmonella Typhi were observed in leaves harvested in autumn. In order to compare wild oregano with cultivated oregano, analyses were performed in the season with the highest essential oil yield and antioxidant activity, recorded in autumn. The main difference found was the ratio of thymol:carvacrol in wild oregano oil, which was 1:8.6, while in cultivated oregano, it was approximately 1:2, which was maintained in all three seasons. The EO on wild conditions showed the best antibacterial activity in Salmonella Typhi. On the other hand, wild and cultivated oregano showed similar antioxidant activity. One advantage of the use of cultivated oregano is that its supply is guaranteed, in contrast to that of wild oregano.
Physicochemical Characterization and Thermodynamic Analysis of Avocado Oil Enhanced with Haematococcus pluvialis Extract
The consumption of fatty acids offers significant health benefits; however, they are prone to degradation by environmental factors. One method to preserve these fatty acids is the addition of synthetic antioxidants. This study focuses on the determination of peroxide and MDA formation rates at temperatures of 25 °C, 45 °C, and 65 °C. The oxidative stability of cold-pressed avocado oil was evaluated using pure astaxanthin, TBHQ, and H. pluvialis extract at concentrations of 100, 500, and 1000 ppm. Kinetic models and thermodynamic analysis were applied to determine the oxidation rate and compare the antioxidant effects of H. pluvialis extract with astaxanthin and TBHQ. The Arrhenius model was used to estimate activation energy (Ea), enthalpy, entropy, and free energy. Avocado oil with 500 ppm of H. pluvialis extract showed antioxidant effects comparable to TBHQ and pure astaxanthin. The activation energy of plain avocado oil was 40.47 kJ mol−1, while with H. pluvialis extract, it was 54.35 kJ mol−1. These findings suggest that H. pluvialis extract offers effective antioxidant properties and could serve as a natural alternative to synthetic antioxidants in food applications, despite the limitations of unprotected astaxanthin.
Production and Preliminary Characterization of Linseed Mucilage-Based Films Loaded with Cardamom (Elettaria cardamomum) and Copaiba (Copaifera officinalis)
In this research, developed linseed mucilage (M)-based films loaded with E. cardamom (MCA), C. officinalis (MCO), and co-loaded with both compounds (MCACO) were evaluated. The incorporation of the active compounds modified the color (redness–greenness, and yellowness); however, the thickness remained constant in all treatments (0.0042–0.0052 mm). In addition, the solubilization time of the films (in artificial saliva) to release the active compounds fluctuates between 9 and 12 min. Furthermore, the incorporation of bioactive compounds increased the total phenolic content and antioxidant activity (DPPH and ABTS, respectively), mainly in MCA (inhibition of 81.99 and 95.80%, respectively) and MCACO (inhibition of 47.15% and 39.73%, respectively). In addition, the incorporation of these compounds also decreased the hardness (39.50%–70.81%), deformation (49.16%–78.30%), and fracturability (39.58%–82.95%). On the other hand, it did not modify the adhesiveness, except in MCO. Moreover, SEM micrographs showed a more homogeneous structure in the MCO films among the films that contained CA in the formulation (heterogeneous structure with the presence of protuberances). Finally, due to the previously reported pharmacological properties of E. cardamomun and C. officinalis, the films developed in this study could have an application as a wound dressing in dentistry.
Development and Characterization of Gelled Double Emulsions Based on Chia (Salvia hispanica L.) Mucilage Mixed with Different Biopolymers and Loaded with Green Tea Extract (Camellia sinensis)
The aim of this research was to develop and characterize five gelled double emulsions based on chia mucilage (CM) and different biopolymers (κ-carrageenan, C; locust bean gum, L; thixogum, T; and whey protein concentrate, W) loaded with green tea extract (GTE). Gelled double emulsions consisted of W1 (whey-protein-concentrate/sodium-azide/NaCl/GTE)/O and (PGPR/canola-oi)/W2 (CM, CMC, CML, CMT and CMW), and were characterized based on physicochemical properties during 35 days of storage. Optical microscopy clearly showed the drops of the internal phase surrounded by droplets of oil dispersed in the second aqueous phase; the droplet size was higher for CMT and lowest for CMW. In addition, all emulsions were highly stable at creaming and were effective in reducing the loss of antioxidant activity (88.82%) and total phenols (64.26%) during storage; CMT, CML and CM were the most effective. Furthermore, all emulsions showed a protective effect by modulating the release of the GTE in a simulated gastrointestinal environment, allowing a controlled release during the gastric-intestinal digestion phases and reaching its maximum release in the intestinal phase (64.57–83.31%). Thus, gelled double emulsions are an alternative for the preservation of GTE and could be a potential alternative for their application in the development of functional foods.
Novel Bioactive Kefiran-Based Films Enriched with Grape Pomace Extract
The increasing demand for eco-friendly and functional packaging materials has driven research on biodegradable materials incorporating bioactive compounds. In this study, kefiran-based films (K; 3%) were developed and incorporated with grape pomace extract (GPE) at different concentrations (3K-0.5GPE, 3K-1.0GPE, and 3K-1.5GPE). The films were characterized based on their physicochemical, mechanical, antioxidant, and antimicrobial properties. It was found that the incorporation of GPE into the films increased the L*, a*, b*, and ΔE values, as well as the thickness, and improved UV radiation protection. FT-IR analysis revealed interactions between kefiran and the phenolic compounds of GPE, without altering the polymer structure. In addition, an increase in tensile strength and elongation at break was observed, evidencing a plasticizing effect of GPE, which also increased the water vapor permeability of 3K-1.5GPE. Solubility was not affected by the incorporation of GPE into the films. Regarding bioactive properties, the addition of GPE increased antioxidant activity and total phenolics. Antimicrobial assays showed activity only for the 3K-0.5GPE film against Listeria monocytogenes, with no activity against Escherichia coli. Overall, kefiran-based films containing GPE exhibit characteristics that position them as potential alternatives for sustainable, bioactive food packaging materials, thereby promoting the valorization of by-products from the wine industry.