Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42
result(s) for
"Rodriguez‐fernandez, Nemesio"
Sort by:
Evaluation of SMOS, SMAP, ASCAT and Sentinel-1 Soil Moisture Products at Sites in Southwestern France
by
Al Bitar, Ahmad
,
Calvet, Jean-Christophe
,
Rodríguez-Fernández, Nemesio
in
Accuracy
,
ASCAT
,
Bias
2018
This study evaluates the accuracy of several recent remote sensing Surface Soil Moisture (SSM) products at sites in southwestern France. The products used are Soil Moisture Active Passive “SMAP” (level 3: 36 km × 36 km, level 3 enhanced: 9 km × 9 km, and Level 2 SMAP/Sentinel-1: 1 km × 1km), Advanced Scatterometer “ASCAT” (level 2 with three spatial resolution 25 km × 25 km, 12.5 km × 12.5 km, and 1 km × 1 km), Soil Moisture and Ocean Salinity “SMOS” (SMOS INRA-CESBIO “SMOS-IC”, SMOS Near-Real-Time “SMOS-NRT”, SMOS Centre Aval de Traitement des Données SMOS level 3 “SMOS-CATDS”, 25 km × 25 km) and Sentinel-1(S1) (25 km × 25 km, 9 km × 9 km, and 1 km × 1 km). The accuracy of SSM products was computed using in situ measurements of SSM observed at a depth of 5 cm. In situ measurements were obtained from the SMOSMANIA ThetaProbe (Time Domaine reflectometry) network (7 stations between 1 January 2016 and 30 June 2017) and additional field campaigns (near Montpellier city in France, between 1 January 2017 and 31 May 2017) in southwestern France. For our study sites, results showed that (i) the accuracy of the Level 2 SMAP/Sentinel-1 was lower than that of SMAP-36 km and SMAP-9 km; (ii) the SMAP-36 km and SMAP-9 km products provide more precise SSM estimates than SMOS products (SMOS-IC, SMOS-NRT, and SMOS-CATDS), mainly due to higher sensitivity of SMOS to RFI (Radio Frequency Interference) noise; and (iii) the accuracy of SMAP-36 km and SMAP-9 km products was similar to that of ASCAT (ASCAT-25 km, ASCAT-12.5 km and ASCAT-1 km) and S1 (S1-25 km, S1-9 km, and S1-1 km) products. The accuracy of SMAP, Sentinel-1 and ASCAT SSM products calculated using the average of statistics obtained on each site is defined by a bias of about −3.2 vol. %, RMSD (Root Mean Square Difference) about 7.6 vol. %, ubRMSD (unbiased Root Mean Square Difference)about 5.6 vol. %, and R coefficient about 0.57. For SMOS products, the station average bias, RMSD, ubRMSD, and R coefficient were about −10.6 vol. %, 12.7 vol. %, 5.9 vol. %, and 0.49, respectively.
Journal Article
Long Term Global Surface Soil Moisture Fields Using an SMOS-Trained Neural Network Applied to AMSR-E Data
by
Mialon, Arnaud
,
Kerr, Yann
,
Rodríguez-Fernández, Nemesio
in
Bias
,
Boreal forests
,
Climate change
2016
A method to retrieve soil moisture (SM) from Advanced Scanning Microwave Radiometer—Earth Observing System Sensor (AMSR-E) observations using Soil Moisture and Ocean Salinity (SMOS) Level 3 SM as a reference is discussed. The goal is to obtain longer time series of SM with no significant bias and with a similar dynamical range to that of the SMOS SM dataset. This method consists of training a neural network (NN) to obtain a global non-linear relationship linking AMSR-E brightness temperatures ( T b ) to the SMOS L3 SM dataset on the concurrent mission period of 1.5 years. Then, the NN model is used to derive soil moisture from past AMSR-E observations. It is shown that in spite of the different frequencies and sensing depths of AMSR-E and SMOS, it is possible to find such a global relationship. The sensitivity of AMSR-E T b ’s to soil temperature ( T s o i l ) was also evaluated using European Centre for Medium-Range Weather Forecast Interim/Land re-analysis (ERA-Land) and Modern-Era Retrospective analysis for Research and Applications-Land (MERRA-Land) model data. The best combination of AMSR-E T b ’s to retrieve T s o i l is H polarization at 23 and 36 GHz plus V polarization at 36 GHz. Regarding SM, several combinations of input data show a similar performance in retrieving SM. One NN that uses C and X bands and T s o i l information was chosen to obtain SM in the 2003–2011 period. The new dataset shows a low bias (<0.02 m3/m3) and low standard deviation of the difference (<0.04 m3/m3) with respect to SMOS L3 SM over most of the globe’s surface. The new dataset was evaluated together with other AMSR-E SM datasets and the Climate Change Initiative (CCI) SM dataset against the MERRA-Land and ERA-Land models for the 2003–2011 period. All datasets show a significant bias with respect to models for boreal regions and high correlations over regions other than the tropical and boreal forest. All of the global SM datasets including AMSR-E NN were also evaluated against a large number of in situ measurements over four continents. Over Australia, all datasets show a strong level of agreement with in situ measurements. Models perform better over Europe and mountainous regions in North America. Remote sensing datasets (in particular NN and the Land Parameter Retrieval Model (LPRM)) perform as well as models for other North American sites and perform better than models over the Sahel region.
Journal Article
Delayed Pantropical Carbon Sink Recovery Due To Asynchronous Post‐El Niño Photosynthesis and Respiration Trajectories
2025
Occurring in 2015/16, the strong El Niño has been shown to significantly influence the pantropical carbon fluxes with multiple lines of evidence. However, a comprehensive understanding on the regional and vegetation‐specific net ecosystem productivity (NEP) in response to this El Niño event and its recovery trajectories remain unclear. We revisited the controlling factors in the recovery of pantropical NEP from the 2015/16 El Niño until 2020 using a data assimilation framework. We estimated the pantropical net carbon emissions of 0.91 Pg C/yr in 2015 and the mean fraction of recovered area was 0.77 ± 0.07 during 2016–2020. Specifically, we found that temperature and radiation played dominant roles in controlling the recovery of forests' NEP via reducing photosynthesis. Furthermore, we revealed the compound climatic controls on enhanced ecosystem respiration offset NEP recovery over non‐forests. These results suggest that the divergence in carbon fluxes regulates the pantropical ecosystem net carbon uptake recovery.
Journal Article
An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa
by
Interactions Sol Plante Atmosphère (UMR ISPA) ; Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)
,
The Inversion Lab
,
Bouvet, Alexandre
in
Annual precipitation
,
Biomass
,
Correlation
2018
The vegetation optical depth (VOD) measured at microwave frequencies is related to the vegetation water content and provides information complementary to visible/infrared vegetation indices. This study is devoted to the characterization of a new VOD data set obtained from SMOS (Soil Moisture and Ocean Salinity) satellite observations at L-band (1.4 GHz). Three different SMOS L-band VOD (LVOD) data sets (SMOS level 2, level 3 and SMOS-IC) were compared with data sets on tree height, visible/infrared indexes (NDVI, EVI), mean annual precipitation and above-ground biomass (AGB) for the African continent. For all relationships, SMOS-IC showed the lowest dispersion and highest correlation. Overall, we found a strong (R > 0.85) correlation with no clear sign of saturation between L-VOD and four AGB data sets. The relationships between L-VOD and the AGB data sets were linear per land cover class but with a changing slope depending on the class type, which makes it a global non-linear relationship. In contrast, the relationship linking L-VOD to tree height (R = 0.87) was close to linear. For vegetation classes other than evergreen broadleaf forest, the annual mean of L-VOD spans a range from 0 to 0.7 and it is linearly correlated with the average annual precipitation. SMOS L-VOD showed higher sensitivity to AGB compared to NDVI and K/X/C-VOD (VOD measured at 19, 10.7 and 6.9 GHz). The results showed that, although the spatial resolution of L-VOD is coarse (similar to 40 km), the high temporal frequency and sensitivity to AGB makes SMOS L-VOD a very promising indicator for large-scale monitoring of the vegetation status, in particular biomass.
Journal Article
SMOS near-real-time soil moisture product: processor overview and first validation results
by
Rodríguez-Fernández, Nemesio J.
,
Albergel, Clement
,
de Rosnay, Patricia
in
Algorithms
,
Brightness temperature
,
Climate
2017
Measurements of the surface soil moisture (SM) content are important for a wide range of applications. Among them, operational hydrology and numerical weather prediction, for instance, need SM information in near-real-time (NRT), typically not later than 3 h after sensing. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite is the first mission specifically designed to measure SM from space. The ESA Level 2 SM retrieval algorithm is based on a detailed geophysical modelling and cannot provide SM in NRT. This paper presents the new ESA SMOS NRT SM product. It uses a neural network (NN) to provide SM in NRT. The NN inputs are SMOS brightness temperatures for horizontal and vertical polarizations and incidence angles from 30 to 45°. In addition, the NN uses surface soil temperature from the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The NN was trained on SMOS Level 2 (L2) SM. The swath of the NRT SM retrieval is somewhat narrower (∼ 915 km) than that of the L2 SM dataset (∼ 1150 km), which implies a slightly lower revisit time. The new SMOS NRT SM product was compared to the SMOS Level 2 SM product. The NRT SM data show a standard deviation of the difference with respect to the L2 data of < 0.05 m3 m−3 in most of the Earth and a Pearson correlation coefficient higher than 0.7 in large regions of the globe. The NRT SM dataset does not show a global bias with respect to the L2 dataset but can show local biases of up to 0.05 m3 m−3 in absolute value. The two SMOS SM products were evaluated against in situ measurements of SM from more than 120 sites of the SCAN (Soil Climate Analysis Network) and the USCRN (US Climate Reference Network) networks in North America. The NRT dataset obtains similar but slightly better results than the L2 data. In summary, the NN SMOS NRT SM product exhibits performances similar to those of the Level 2 SM product but it has the advantage of being available in less than 3.5 h after sensing, complying with NRT requirements. The new product is processed at ECMWF and it is distributed by ESA and via the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) multicast service (EUMETCast).
Journal Article
The Effect of Three Different Data Fusion Approaches on the Quality of Soil Moisture Retrievals from Multiple Passive Microwave Sensors
by
Kerr, Yann
,
Rodríguez-Fernández, Nemesio
,
Wigneron, Jean-Pierre
in
climate data records
,
Environmental Sciences
,
Life Sciences
2018
Long-term climate records of soil moisture are of increased importance to climate researchers. In this study, we aim to evaluate the quality of three different fusion approaches that combine soil moisture retrieval from multiple satellite sensors. The arrival of L-band missions has led to an increased focus on the integration of L-band-based soil moisture retrievals in climate records, emphasizing the need to improve our understanding based on its added value within a multi-sensor framework. The three evaluated approaches were developed on 10-year passive microwave data (2003–2013) from two different satellite sensors, i.e., SMOS (2010–2013) and AMSR-E (2003–2011), and are based on a neural network (NN), regressions (REG), and the Land Parameter Retrieval Model (LPRM). The ability of the different approaches to best match AMSR-E and SMOS in their overlapping period was tested using an inter-comparison exercise between the SMOS and AMSR-E datasets, while the skill of the individual soil moisture products, based on anomalies, was evaluated using two verification techniques; first, a data assimilation technique that links precipitation information to the quality of soil moisture (expressed as the Rvalue), and secondly the triple collocation analysis (TCA). ASCAT soil moisture was included in the skill evaluation, representing the active microwave-based counterpart of soil moisture retrievals. Besides a semi-global analysis, explicit focus was placed on two regions that have strong land–atmosphere coupling, the Sahel (SA) and the central Great Plains (CGP) of North America. The NN approach gives the highest correlation coefficient between SMOS and AMSR-E, closely followed by LPRM and REG, while the absolute error is approximately the same for all three approaches. The Rvalue and TCA show the strength of using different satellite sources and the impact of different merging approaches on the skill to correctly capture soil moisture anomalies. The highest performance is found for AMSR-E over sparse vegetation, for SMOS over moderate vegetation, and for ASCAT over dense vegetation cover. While the two SMOS datasets (L3 and LPRM) show a similar performance, the three AMSR-E datasets do not. The good performance for AMSR-E over spare vegetation is mainly perceived for AMSR-E LPRM, benefiting from the physically based model, while AMSR-E NN shows improved skill in densely vegetated areas, making optimal use of the SMOS L3 training dataset. AMSR-E REG has a reasonable performance over sparsely vegetated areas; however, it quickly loses skill with increasing vegetation density. The findings over the SA and CGP mainly reflect results that are found in earlier sections. This confirms that historical soil moisture datasets based on a combination of these sources are a valuable source of information for climate research.
Journal Article
Hybrid Methodology Using Sentinel-1/Sentinel-2 for Soil Moisture Estimation
by
Nativel, Simon
,
Albergel, Clement
,
Rodriguez-Fernandez, Nemesio
in
Algorithms
,
artificial neural network
,
Atmospheric models
2022
Soil moisture is an essential parameter for a better understanding of water processes in the soil–vegetation–atmosphere continuum. Satellite synthetic aperture radar (SAR) is well suited for monitoring water content at fine spatial resolutions on the order of 1 km or higher. Several methodologies are often considered in the inversion of SAR signals: machine learning techniques, such as neural networks, empirical models and change detection methods. In this study, we propose two hybrid methodologies by improving a change detection approach with vegetation consideration or by combining a change detection approach together with a neural network algorithm. The methodology is based on Sentinel-1 and Sentinel-2 data with the use of numerous metrics, including vertical–vertical (VV) and vertical–horizontal (VH) polarization radar signals, the classical change detection surface soil moisture (SSM) index ISSM, radar incidence angle, normalized difference vegetation index (NDVI) optical index, and the VH/VV ratio. Those approaches are tested using in situ data from the ISMN (International Soil Moisture Network) with observations covering different climatic contexts. The results show an improvement in soil moisture estimations using the hybrid algorithms, in particular the change detection with the neural network one, for which the correlation increases by 54% and 33% with respect to that of the neural network or change detection alone, respectively.
Journal Article
Characterizing the channel dependence of vegetation effects on microwave emissions from soils
by
Shi, Jiancheng
,
Zhao, Tianjie
,
Yang, Na
in
biomass
,
Continental interfaces, environment
,
effective scattering albedo
2024
The two vegetation transfer parameters of
$\\tau $
τ
(Vegetation Optical Depth,VOD) and
$\\omega $
ω
(Omega) could vary significantly across microwave channels in terms of frequencies, polarizations, and incidence angles, and their channel-dependent characteristics have not yet been fully investigated. In this study, we investigate the channel dependence of vegetation effects on microwave emissions from soils using a higher-order vegetation radiative transfer model of Tor Vergata. Corn was selected as the subject of investigation, and a corn growth model was developed utilizing field data collected from the multifrequency and multi-angular ground-based microwave radiation experiment from the Soil Moisture Experiment in the Luan River (SMELR). Upon compilation of the simulation dataset of microwave emissions of the corn field, the effective scattering albedo across different channels were calculated using the Tor Vergata model. Results show that vertical polarization of the vegetation optical depth is more affected by incidence angle changes, while horizontal polarization exhibits lower variations in vegetation optical depth due to incidence angle adjustments. The channel dependence of vegetation optical depth can be described as the polarization dependence parameter (
${C_P}$
C
P
) and the frequency dependence parameter (
${C_f}$
C
f
). These two parameters enable the calculation of vegetation optical depth at any channel under three adjacent frequencies (L-band, C-band and X-band). The effective scattering albedo of vegetation does not vary significantly with vegetation height or angle. It primarily depends on frequency and polarization, showing an overall increasing trend with increasing frequency. The effective scattering albedo with vertical polarization is slightly higher than that with horizontal polarization at higher frequencies, while both are lower in the L-band. This investigation is helpful for understanding the vegetation effects on microwave emissions from soils, ultimately advancing the accuracy of large-scale soil moisture retrieval in vegetated areas.
Journal Article
Reconciling Flagging Strategies for Multi-Sensor Satellite Soil Moisture Climate Data Records
by
van der Schalie, Robin
,
Preimesberger, Wolfgang
,
Scanlon, Tracy
in
Algorithms
,
Availability
,
Climate change
2020
Reliable soil moisture retrievals from passive microwave satellite sensors are limited during certain conditions, e.g., snow coverage, radio-frequency interference, and dense vegetation. In these cases, the retrievals can be masked using flagging algorithms. Currently available single- and multi-sensor soil moisture products utilize different flagging approaches. However, a clear overview and comparison of these approaches and their impact on soil moisture data are still lacking. For long-term climate records such as the soil moisture products of the European Space Agency (ESA) Climate Change Initiative (CCI), the effect of any flagging inconsistency resulting from combining multiple sensor datasets is not yet understood. Therefore, the first objective of this study is to review the data flagging system that is used within multi-sensor ESA CCI soil moisture products as well as the flagging systems of two other soil moisture datasets from sensors that are also used for the ESA CCI soil moisture products: The level 3 Soil Moisture and Ocean Salinity (SMOS) and the Soil Moisture Active/Passive (SMAP). The SMOS and SMAP soil moisture flagging systems differ substantially in number and type of conditions considered, critical flags, and data source dependencies. The impact on the data availability of the different flagging systems were compared for the SMOS and SMAP soil moisture datasets. Major differences in data availability were observed globally, especially for northern high latitudes, mountainous regions, and equatorial latitudes (up to 37%, 33%, and 32% respectively) with large seasonal variability. These results highlight the importance of a consistent and well-performing approach that is applicable to all individual products used in long-term soil moisture data records. Consequently, the second objective of the present study is to design a consistent and model-independent flagging strategy to improve soil moisture climate records such as the ESA CCI products. As snow cover, ice, and frozen conditions were demonstrated to have the biggest impact on data availability, a uniform satellite driven flagging strategy was designed for these conditions and evaluated against two ground observation networks. The new flagging strategy demonstrated to be a robust flagging alternative when compared to the individual flagging strategies adopted by the SMOS and SMAP soil moisture datasets with a similar performance, but with the applicability to the entire ESA CCI time record without the use of modelled approximations.
Journal Article
Sensitivity of surface soil moisture retrieval to satellite-derived vegetation descriptors over wheat fields in the Kairouan plain
by
Rodriguez-Fernandez, Nemesio
,
Lili-Chabaane, Zohra
,
Centre d'études spatiales de la biosphère (CESBIO) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
in
Crop fields
,
Dielectric properties
,
Engineering Sciences
2023
Soil moisture estimation is a key component in hydrological processes and irrigation amounts' estimation. The synergetic use of optical and radar data has been proven to retrieve the surface soil moisture at a field scale using the Water Cloud Model (WCM). In this work, we evaluate the impact of staellite-derived vegetation descriptors to estimate the surface soil moisture. Therefore, we used the Sentinel-1 data to test the polarization ratio (σ0VH/σ0VV) and the normalized polarization ratio (IN) and the frequently used optical Normalized Difference vegetation Index (NDVI) as vegetation descriptors. Synchronous with Sentinel-1 acquisitions, in situ soil moisture were collected over wheat fields in the Kairouan plain in the center of Tunisia. To avoid the bare soil roughness effect and the radar signal saturation in dense vegetation context, we considered the data where the NDVI values vary between 0.25 and 0.7. The soil moisture inversion using the WCM and NDVI as a vegetation descriptor was characterized by an RMSE value of 5.6 vol.%. A relatively close performance was obtained using IN and (σ0VH/σ0VV) with RMSE under 7. 5 vol.%. The results revealed the consistency of the radar-derived data in describing the vegetation for the retrieval of soil moisture.
Journal Article