Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
225 result(s) for "Roeder, Kathryn"
Sort by:
Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection
Single-cell CRISPR screens (perturb-seq) link genetic perturbations to phenotypic changes in individual cells. The most fundamental task in perturb-seq analysis is to test for association between a perturbation and a count outcome, such as gene expression. We conduct the first-ever comprehensive benchmarking study of association testing methods for low multiplicity-of-infection (MOI) perturb-seq data, finding that existing methods produce excess false positives. We conduct an extensive empirical investigation of the data, identifying three core analysis challenges: sparsity, confounding, and model misspecification. Finally, we develop an association testing method — SCEPTRE low-MOI — that resolves these analysis challenges and demonstrates improved calibration and power.
SCEPTRE improves calibration and sensitivity in single-cell CRISPR screen analysis
Single-cell CRISPR screens are a promising biotechnology for mapping regulatory elements to target genes at genome-wide scale. However, technical factors like sequencing depth impact not only expression measurement but also perturbation detection, creating a confounding effect. We demonstrate on two single-cell CRISPR screens how these challenges cause calibration issues. We propose SCEPTRE: analysis of single-cell perturbation screens via conditional resampling, which infers associations between perturbations and expression by resampling the former according to a working model for perturbation detection probability in each cell. SCEPTRE demonstrates very good calibration and sensitivity on CRISPR screen data, yielding hundreds of new regulatory relationships supported by orthogonal biological evidence.
APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer’s disease
Beta-amyloid deposition is a defining feature of Alzheimer’s disease (AD). How genetic risk factors, like APOE and TREM2 , intersect with cellular responses to beta-amyloid in human tissues is not fully understood. Using single-nucleus RNA sequencing of postmortem human brain with varied APOE and TREM2 genotypes and neuropathology, we identified distinct microglia subpopulations, including a subpopulation of CD163-positive amyloid-responsive microglia (ARM) that are depleted in cases with APOE and TREM2 risk variants. We validated our single-nucleus RNA sequencing findings in an expanded cohort of AD cases, demonstrating that APOE and TREM2 risk variants are associated with a significant reduction in CD163-positive amyloid-responsive microglia. Our results showcase the diverse microglial response in AD and underscore how genetic risk factors influence cellular responses to underlying pathologies.
eSVD-DE: cohort-wide differential expression in single-cell RNA-seq data using exponential-family embeddings
Background Single-cell RNA-sequencing (scRNA) datasets are becoming increasingly popular in clinical and cohort studies, but there is a lack of methods to investigate differentially expressed (DE) genes among such datasets with numerous individuals. While numerous methods exist to find DE genes for scRNA data from limited individuals, differential-expression testing for large cohorts of case and control individuals using scRNA data poses unique challenges due to substantial effects of human variation, i.e., individual-level confounding covariates that are difficult to account for in the presence of sparsely-observed genes. Results We develop the eSVD-DE, a matrix factorization that pools information across genes and removes confounding covariate effects, followed by a novel two-sample test in mean expression between case and control individuals. In general, differential testing after dimension reduction yields an inflation of Type-1 errors. However, we overcome this by testing for differences between the case and control individuals’ posterior mean distributions via a hierarchical model. In previously published datasets of various biological systems, eSVD-DE has more accuracy and power compared to other DE methods typically repurposed for analyzing cohort-wide differential expression. Conclusions eSVD-DE proposes a novel and powerful way to test for DE genes among cohorts after performing a dimension reduction. Accurate identification of differential expression on the individual level, instead of the cell level, is important for linking scRNA-seq studies to our understanding of the human population.
Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples
Mark Daly and colleagues use population reference samples to refine the role of de novo protein-truncating variants in neurodevelopmental disorders. They show that variants independently observed in population reference samples do not contribute substantively to neurodevelopmental risk, and they use a loss-of-function intolerance metric to identify a small subset of genes that contain the entire observed signal of associated de novo protein-truncating variants in these disorders. Recent research has uncovered an important role for de novo variation in neurodevelopmental disorders. Using aggregated data from 9,246 families with autism spectrum disorder, intellectual disability, or developmental delay, we found that ∼1/3 of de novo variants are independently present as standing variation in the Exome Aggregation Consortium's cohort of 60,706 adults, and these de novo variants do not contribute to neurodevelopmental risk. We further used a loss-of-function (LoF)-intolerance metric, pLI, to identify a subset of LoF-intolerant genes containing the observed signal of associated de novo protein-truncating variants (PTVs) in neurodevelopmental disorders. LoF-intolerant genes also carry a modest excess of inherited PTVs, although the strongest de novo –affected genes contribute little to this excess, thus suggesting that the excess of inherited risk resides in lower-penetrant genes. These findings illustrate the importance of population-based reference cohorts for the interpretation of candidate pathogenic variants, even for analyses of complex diseases and de novo variation.
A framework for the interpretation of de novo mutation in human disease
Mark Daly and colleagues present a statistical framework to evaluate the role of de novo mutations in human disease by calibrating a model of de novo mutation rates at the individual gene level. The mutation probabilities defined by their model and list of constrained genes can be used to help identify genetic variants that have a significant role in disease. Spontaneously arising ( de novo ) mutations have an important role in medical genetics. For diseases with extensive locus heterogeneity, such as autism spectrum disorders (ASDs), the signal from de novo mutations is distributed across many genes, making it difficult to distinguish disease-relevant mutations from background variation. Here we provide a statistical framework for the analysis of excesses in de novo mutation per gene and gene set by calibrating a model of de novo mutation. We applied this framework to de novo mutations collected from 1,078 ASD family trios, and, whereas we affirmed a significant role for loss-of-function mutations, we found no excess of de novo loss-of-function mutations in cases with IQ above 100, suggesting that the role of de novo mutations in ASDs might reside in fundamental neurodevelopmental processes. We also used our model to identify ∼1,000 genes that are significantly lacking in functional coding variation in non-ASD samples and are enriched for de novo loss-of-function mutations identified in ASD cases.
The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment
Recent studies implicate chromatin modifiers in autism spectrum disorder (ASD) through the identification of recurrent de novo loss of function mutations in affected individuals. ASD risk genes are co-expressed in human midfetal cortex, suggesting that ASD risk genes converge in specific regulatory networks during neurodevelopment. To elucidate such networks, we identify genes targeted by CHD8, a chromodomain helicase strongly associated with ASD, in human midfetal brain, human neural stem cells (hNSCs) and embryonic mouse cortex. CHD8 targets are strongly enriched for other ASD risk genes in both human and mouse neurodevelopment, and converge in ASD-associated co-expression networks in human midfetal cortex. CHD8 knockdown in hNSCs results in dysregulation of ASD risk genes directly targeted by CHD8. Integration of CHD8-binding data into ASD risk models improves detection of risk genes. These results suggest loss of CHD8 contributes to ASD by perturbing an ancient gene regulatory network during human brain development. Autism genes converge in midfetal cortical co-expression networks, and chromatin regulators such as CHD8 are increasingly associated with autism spectrum disorder (ASD). Here the authors map CHD8 targets in developing brain, and find that CHD8 directly regulates other ASD risk genes during human neurodevelopment.
Testing for an Unusual Distribution of Rare Variants
Technological advances make it possible to use high-throughput sequencing as a primary discovery tool of medical genetics, specifically for assaying rare variation. Still this approach faces the analytic challenge that the influence of very rare variants can only be evaluated effectively as a group. A further complication is that any given rare variant could have no effect, could increase risk, or could be protective. We propose here the C-alpha test statistic as a novel approach for testing for the presence of this mixture of effects across a set of rare variants. Unlike existing burden tests, C-alpha, by testing the variance rather than the mean, maintains consistent power when the target set contains both risk and protective variants. Through simulations and analysis of case/control data, we demonstrate good power relative to existing methods that assess the burden of rare variants in individuals.
Prospective Relation Between Peer Victimization and Suicidal Ideation: Potential Cognitive Mediators
The current study combines models about the effects of peer victimization on negative self-cognitions with models about the effects of negative cognitions on suicidal ideation. In a two-wave longitudinal investigation of high schoolers (N = 192) and college students (N = 142), the study examined perceived burdensomeness, thwarted belongingness, and hopelessness as mediators of the prospective relation between peer victimization and suicidal ideation. Path analyses yielded three findings: (a) peer victimization predicted perceived burdensomeness but not thwarted belongingness or hopelessness; (b) perceived burdensomeness, thwarted belongingness, and hopelessness each predicted suicidal ideation; and (c) perceived burdensomeness mediated part of the relation between peer victimization and suicidal ideation. These patterns were consistent across samples and did not differ significantly by gender. Results are consistent with aspects of all three original models and provide support for a new cognitive mediation model regarding the relation of peer victimization to suicidal ideation.
Integrated Model of De Novo and Inherited Genetic Variants Yields Greater Power to Identify Risk Genes
De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo LoF mutations occurred at a twofold higher rate than expected by chance. However successful these studies were, they used only a small fraction of the data, excluding other types of de novo mutations and inherited rare variants. Moreover, such analyses cannot readily incorporate data from case-control studies. An important research challenge in gene discovery, therefore, is to develop statistical methods that accommodate a broader class of rare variation. We develop methods that can incorporate WES data regarding de novo mutations, inherited variants present, and variants identified within cases and controls. TADA, for Transmission And De novo Association, integrates these data by a gene-based likelihood model involving parameters for allele frequencies and gene-specific penetrances. Inference is based on a Hierarchical Bayes strategy that borrows information across all genes to infer parameters that would be difficult to estimate for individual genes. In addition to theoretical development we validated TADA using realistic simulations mimicking rare, large-effect mutations affecting risk for ASD and show it has dramatically better power than other common methods of analysis. Thus TADA's integration of various kinds of WES data can be a highly effective means of identifying novel risk genes. Indeed, application of TADA to WES data from subjects with ASD and their families, as well as from a study of ASD subjects and controls, revealed several novel and promising ASD candidate genes with strong statistical support.