Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
554 result(s) for "Rogers, Benjamin"
Sort by:
Two-step crystallization and solid–solid transitions in binary colloidal mixtures
Crystallization is fundamental to materials science and is central to a variety of applications, ranging from the fabrication of silicon wafers for microelectronics to the determination of protein structures. The basic picture is that a crystal nucleates from a homogeneous fluid by a spontaneous fluctuation that kicks the system over a single free-energy barrier. However, it is becoming apparent that nucleation is often more complicated than this simple picture and, instead, can proceed via multiple transformations of metastable structures along the pathway to the thermodynamic minimum. In this article, we observe, characterize, and model crystallization pathways using DNA-coated colloids. We use optical microscopy to investigate the crystallization of a binary colloidal mixture with single-particle resolution. We observe classical one-step pathways and nonclassical two-step pathways that proceed via a solid–solid transformation of a crystal intermediate. We also use enhanced sampling to compute the free-energy landscapes corresponding to our experiments and show that both one- and two-step pathways are driven by thermodynamics alone. Specifically, the two-step solid–solid transition is governed by a competition between two different crystal phases with free energies that depend on the crystal size. These results extend our understanding of available pathways to crystallization, by showing that size-dependent thermodynamic forces can produce pathways with multiple crystal phases that interconvert without free-energy barriers and could provide approaches to controlling the self-assembly of materials made from colloids.
Self-assembly of photonic crystals by controlling the nucleation and growth of DNA-coated colloids
DNA-coated colloids can self-assemble into an incredible diversity of crystal structures, but their applications have been limited by poor understanding and control over the crystallization dynamics. To address this challenge, we use microfluidics to quantify the kinetics of DNA-programmed self-assembly along the entire crystallization pathway, from thermally activated nucleation through reaction-limited and diffusion-limited phases of crystal growth. Our detailed measurements of the temperature and concentration dependence of the kinetics at all stages of crystallization provide a stringent test of classical theories of nucleation and growth. After accounting for the finite rolling and sliding rates of micrometer-sized DNA-coated colloids, we show that modified versions of these classical theories predict the absolute nucleation and growth rates with quantitative accuracy. We conclude by applying our model to design and demonstrate protocols for assembling large single crystals with pronounced structural coloration, an essential step in creating next-generation optical metamaterials from colloids.
Driving diffusionless transformations in colloidal crystals using DNA handshaking
Many crystals, such as those of metals, can transform from one symmetry into another having lower free energy via a diffusionless transformation. Here we create binary colloidal crystals consisting of polymer microspheres, pulled together by DNA bridges, that induce specific, reversible attractions between two species of microspheres. Depending on the relative strength of the different interactions, the suspensions spontaneously form either compositionally ordered crystals with CsCl and CuAu-I symmetries, or disordered, solid solution crystals when slowly cooled. Our observations indicate that the CuAu-I crystals form from CsCl parent crystals by a diffusionless transformation, analogous to the Martensitic transformation of iron. Detailed simulations confirm that CuAu-I is not kinetically accessible by direct nucleation from the fluid, but does have a lower free energy than CsCl. The ease with which such structural transformations occur suggests new ways of creating unique metamaterials having structures that may be otherwise kinetically inaccessible. Crystalline material may be stabilized by complementary DNA interactions but its subsequent capacity for structural transformation is poorly understood. Here, by tuning the DNA handshaking between two sets of nanoparticles, a Martensitic transformation within the binary colloidal crystals is observed.
Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling
DNA bridging can be used to induce specific attractions between small particles, providing a highly versatile approach to creating unique particle-based materials having a variety of periodic structures. Surprisingly, given the fact that the thermodynamics of DNA strands in solution are completely understood, existing models for DNA-induced particle interactions are typically in error by more than an order of magnitude in strength and a factor of two in their temperature dependence. This discrepancy has stymied efforts to design the complex temperature, sequence and time-dependent interactions needed for the most interesting applications, such as materials having highly complex or multicomponent microstructures or the ability to reconfigure or self-replicate. Here we report high-spatial resolution measurements of DNA-induced interactions between pairs of polystyrene microspheres at binding strengths comparable to those used in self-assembly experiments, up to 6 kBT. We also describe a conceptually straightforward and numerically tractable model that quantitatively captures the separation dependence and temperature-dependent strength of these DNA-induced interactions, without empirical corrections. This model was equally successful when describing the more complex and practically relevant case of grafted DNA brushes with self-interactions that compete with interparticle bridge formation. Together, our findings motivate a nanomaterial design approach where unique functional structures can be found computationally and then reliably realized in experiment.
Macroscopic photonic single crystals via seeded growth of DNA-coated colloids
Photonic crystals—a class of materials whose optical properties derive from their structure in addition to their composition—can be created by self-assembling particles whose sizes are comparable to the wavelengths of visible light. Proof-of-principle studies have shown that DNA can be used to guide the self-assembly of micrometer-sized colloidal particles into fully programmable crystal structures with photonic properties in the visible spectrum. However, the extremely temperature-sensitive kinetics of micrometer-sized DNA-functionalized particles has frustrated attempts to grow large, monodisperse crystals that are required for photonic metamaterial applications. Here we describe a robust two-step protocol for self-assembling single-domain crystals that contain millions of optical-scale DNA-functionalized particles: Monodisperse crystals are initially assembled in monodisperse droplets made by microfluidics, after which they are grown to macroscopic dimensions via seeded diffusion-limited growth. We demonstrate the generality of our approach by assembling different macroscopic single-domain photonic crystals with metamaterial properties, like structural coloration, that depend on the underlying crystal structure. By circumventing the fundamental kinetic traps intrinsic to crystallization of optical-scale DNA-coated colloids, we eliminate a key barrier to engineering photonic devices from DNA-programmed materials. DNA-programmed colloidal assembly of macroscopic crystals for photonic applications remains elusive. Here, the authors use insights from studies of nucleation and seeded growth to develop a two-step method for assembling macroscopic photonic crystals.
Do Human Extraintestinal Escherichia coli Infections Resistant to Expanded-Spectrum Cephalosporins Originate From Food-Producing Animals? A Systematic Review
To find out whether food-producing animals (FPAs) are a source of extraintestinal expanded-spectrum cephalosporin-resistant Escherichia coli (ESCR-EC) infections in humans, Medline, Embase, and the Cochrane Database of Systematic Reviews were systematically reviewed. Thirty-four original, peer-reviewed publications were identified for inclusion. Six molecular epidemiology studies supported the transfer of resistance via whole bacterium transmission (WBT), which was best characterized among poultry in the Netherlands. Thirteen molecular epidemiology studies supported transmission of resistance via mobile genetic elements, which demonstrated greater diversity of geography and host FPA. Seventeen molecular epidemiology studies did not support WBT and two did not support mobile genetic element-mediated transmission. Four observational epidemiology studies were consistent with zoonotic transmission. Overall, there is evidence that a proportion of human extraintestinal ESCR-EC infections originate from FPAs. Poultry, in particular, is probably a source, but the quantitative and geographical extent of the problem is unclear and requires further investigation.
Artificial Intelligence Tools for Improving Manometric Diagnosis of Esophageal Dysmotility
Purpose of Review Artificial intelligence (AI) is a broad term that pertains to a computer’s ability to mimic and sometimes surpass human intelligence in interpretation of large datasets. The adoption of AI in gastrointestinal motility has been slower compared to other areas such as polyp detection and interpretation of histopathology. Recent Findings Within esophageal physiologic testing, AI can automate interpretation of image-based tests, especially high resolution manometry (HRM) and functional luminal imaging probe (FLIP) studies. Basic tasks such as identification of landmarks, determining adequacy of the HRM study and identification from achalasia from non-achalasia patterns are achieved with good accuracy. However, existing AI systems compare AI interpretation to expert analysis rather than to clinical outcome from management based on AI diagnosis. The use of AI methods is much less advanced within the field of ambulatory reflux monitoring, where challenges exist in assimilation of data from multiple impedance and pH channels. There remains potential for replication of the AI successes within esophageal physiologic testing to HRM of the anorectum, and to innovative and novel methods of evaluating gastric electrical activity and motor function. Summary The use of AI has tremendous potential to improve detection of dysmotility within the esophagus using esophageal physiologic testing, as well as in other regions of the gastrointestinal tract. Eventually, integration of patient presentation, demographics and alternate test results to individual motility test interpretation will improve diagnostic precision and prognostication using AI tools.
Proximal Gastric Pressurization After Sleeve Gastrectomy Associates With Gastroesophageal Reflux
INTRODUCTION:Sleeve gastrectomy (SG) results in persistent or de novo reflux more often than Roux-en-Y gastric bypass (RYGB). We investigated pressurization patterns in the proximal stomach on high-resolution manometry (HRM) to determine associations with reflux after SG.METHODS:Patients undergoing HRM and ambulatory pH-impedance monitoring after SG and RYGB over a 2-year period (2019-2020) were included. For each included patient, 2 symptomatic control patients with HRM and pH-impedance monitoring for reflux symptoms were identified within the same time frame; 15 asymptomatic healthy controls with HRM studies were also studied. Concurrent myotomy and preoperative diagnosis of obstructive motor disorders were exclusions. Conventional HRM metrics, esophagogastric junction (EGJ) pressures, contractile integral (EGJ-CI), acid exposure time (AET), and reflux episode numbers were extracted. Intragastric pressure was sampled at baseline, during swallows, and with straight leg raise maneuver, and compared with intraesophageal pressure and reflux burden.RESULTS:Patient cohorts included 36 SG patients, 23 RYGB patients, 113 symptomatic controls, and 15 asymptomatic controls. While both SG and RYGB patients pressurized the stomach during swallows and straight leg raise, SG patients had higher AET (median 6.0% vs 0.2%), reflux episode numbers (median 63.0 vs 37.5), and baseline intragastric pressure (median 17.3 mm Hg vs 13.1 mm Hg) (P < 0.001). SG patients also had lower trans-EGJ pressure gradients when reflux episodes were >80 or AET was >6.0% (P = 0.018 and 0.08, respectively, compared with no pathologic reflux). On multivariable analysis, SG status and low EGJ-CI independently associated with AET and reflux episode numbers (P ≤ 0.04).DISCUSSION:Impaired EGJ barrier function and proximal gastric pressurization after SG are associated with gastroesophageal reflux, especially during strain maneuvers.