Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
177 result(s) for "Rogers, Raymond R"
Sort by:
Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology
The spectacular fossil fauna and flora preserved in the Upper Cretaceous terrestrial strata of North America’s Western Interior Basin record an exceptional peak in the diversification of fossil vertebrates in the Campanian, which has been termed the ‘zenith of dinosaur diversity’. The wide latitudinal distribution of rocks and fossils that represent this episode, spanning from northern Mexico to the northern slopes of Alaska, provides a unique opportunity to gain insights into dinosaur paleoecology and to address outstanding questions regarding faunal provinciality in connection to paleogeography and climate. Whereas reliable basin-wide correlations are fundamental to investigations of this sort, three decades of radioisotope geochronology of various vintages and limited compatibility has complicated correlation of distant fossil-bearing successions and given rise to contradictory paleobiogeographic and evolutionary hypotheses. Here we present new U–Pb geochronology by the CA-ID-TIMS method for 16 stratigraphically well constrained bentonite beds, ranging in age from 82.419 ± 0.074 Ma to 73.496 ± 0.039 Ma (2σ internal uncertainties), and the resulting Bayesian age models for six key fossil-bearing formations over a 1600 km latitudinal distance from northwest New Mexico, USA to southern Alberta, Canada. Our high-resolution chronostratigraphic framework for the upper Campanian of the Western Interior Basin reveals that despite their contrasting depositional settings and basin evolution histories, significant age overlap exists between the main fossil-bearing intervals of the Kaiparowits Formation (southern Utah), Judith River Formation (central Montana), Two Medicine Formation (western Montana) and Dinosaur Park Formation (southern Alberta). Pending more extensive paleontologic collecting that would allow more rigorous faunal analyses, our results support a first-order connection between paleoecologic and fossil diversities and help overcome the chronostratigraphic ambiguities that have impeded the testing of proposed models of latitudinal provinciality of dinosaur taxa during the Campanian.
Osteohistological insight into the growth dynamics of early dinosaurs and their contemporaries
Dinosauria debuted on Earth’s stage in the aftermath of the Permo-Triassic Mass Extinction Event, and survived two other Triassic extinction intervals to eventually dominate terrestrial ecosystems. More than 231 million years ago, in the Upper Triassic Ischigualasto Formation of west-central Argentina, dinosaurs were just getting warmed up. At this time, dinosaurs represented a minor fraction of ecosystem diversity. Members of other tetrapod clades, including synapsids and pseudosuchians, shared convergently evolved features related to locomotion, feeding, respiration, and metabolism and could have risen to later dominance. However, it was Dinosauria that radiated in the later Mesozoic most significantly in terms of body size, diversity, and global distribution. Elevated growth rates are one of the adaptations that set later Mesozoic dinosaurs apart, particularly from their contemporary crocodilian and mammalian compatriots. When did the elevated growth rates of dinosaurs first evolve? How did the growth strategies of the earliest known dinosaurs compare with those of other tetrapods in their ecosystems? We studied femoral bone histology of an array of early dinosaurs alongside that of non-dinosaurian contemporaries from the Ischigualasto Formation in order to test whether the oldest known dinosaurs exhibited novel growth strategies. Our results indicate that the Ischigualasto vertebrate fauna collectively exhibits relatively high growth rates. Dinosaurs are among the fastest growing taxa in the sample, but they occupied this niche alongside crocodylomorphs, archosauriformes, and large-bodied pseudosuchians. Interestingly, these dinosaurs grew at least as quickly, but more continuously than sauropodomorph and theropod dinosaurs of the later Mesozoic. These data suggest that, while elevated growth rates were ancestral for Dinosauria and likely played a significant role in dinosaurs’ ascent within Mesozoic ecosystems, they did not set them apart from their contemporaries.
Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity
The fossil record of mammaliaforms (mammals and their closest relatives) of the Mesozoic era from the southern supercontinent Gondwana is far less extensive than that from its northern counterpart, Laurasia 1 , 2 . Among Mesozoic mammaliaforms, Gondwanatheria is one of the most poorly known clades, previously represented by only a single cranium and isolated jaws and teeth 1 – 5 . As a result, the anatomy, palaeobiology and phylogenetic relationships of gondwanatherians remain unclear. Here we report the discovery of an articulated and very well-preserved skeleton of a gondwanatherian of the latest age (72.1–66 million years ago) of the Cretaceous period from Madagascar that we assign to a new genus and species, Adalatherium hui . To our knowledge, the specimen is the most complete skeleton of a Gondwanan Mesozoic mammaliaform that has been found, and includes the only postcranial material and ascending ramus of the dentary known for any gondwanatherian. A phylogenetic analysis including the new taxon recovers Gondwanatheria as the sister group to Multituberculata. The skeleton, which represents one of the largest of the Gondwanan Mesozoic mammaliaforms, is particularly notable for exhibiting many unique features in combination with features that are convergent on those of therian mammals. This uniqueness is consistent with a lineage history for A. hui of isolation on Madagascar for more than 20 million years. Adalatherium hui , a newly discovered gondwanatherian mammal from Madagascar dated to near the end of the Cretaceous period, shows features consistent with a long evolutionary trajectory of isolation in an insular environment.
The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm
Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One year of CALIPSO level 2 version 2 data are analyzed to assess the veracity of the CALIPSO aerosol-type identification algorithm and generate vertically resolved distributions of aerosol types and their respective optical characteristics. To assess the robustness of the algorithm, the interannual variability is analyzed by using a fixed season (June–August) and aerosol type (polluted dust) over two consecutive years (2006 and 2007). The CALIPSO models define six aerosol types: clean continental, clean marine, dust, polluted continental, polluted dust, and smoke, with 532-nm (1064 nm) extinction-to-backscatter ratios Sa of 35 (30), 20 (45), 40 (55), 70 (30), 65 (30), and 70 (40) sr, respectively. This paper presents the global distributions of the CALIPSO aerosol types, the complementary distributions of integrated attenuated backscatter, and the volume depolarization ratio for each type. The aerosol-type distributions are further partitioned according to surface type (land/ocean) and detection resolution (5, 20, and 80 km) for optical and spatial context, because the optically thick layers are found most often at the smallest spatial resolution. Except for clean marine and polluted continental, all the aerosol types are found preferentially at the 80-km resolution. Nearly 80% of the smoke cases and 60% of the polluted dust cases are found over water, whereas dust and polluted continental cases are found over both land and water at comparable frequencies. Because the CALIPSO observables do not sufficiently constrain the determination of the aerosol, the surface type is used to augment the selection criteria. Distributions of the total attenuated color ratios show that the use of surface type in the typing algorithm does not result in abrupt and artificial changes in aerosol type or extinction.
First cranial remains of a gondwanatherian mammal reveal remarkable mosaicism
Previously known only from isolated teeth and lower jaw fragments recovered from the Cretaceous and Palaeogene of the Southern Hemisphere, the Gondwanatheria constitute the most poorly known of all major mammaliaform radiations. Here we report the discovery of the first skull material of a gondwanatherian, a complete and well-preserved cranium from Upper Cretaceous strata in Madagascar that we assign to a new genus and species. Phylogenetic analysis strongly supports its placement within Gondwanatheria, which are recognized as monophyletic and closely related to multituberculates, an evolutionarily successful clade of Mesozoic mammals known almost exclusively from the Northern Hemisphere. The new taxon is the largest known mammaliaform from the Mesozoic of Gondwana. Its craniofacial anatomy reveals that it was herbivorous, large-eyed and agile, with well-developed high-frequency hearing and a keen sense of smell. The cranium exhibits a mosaic of primitive and derived features, the disparity of which is extreme and probably reflective of a long evolutionary history in geographic isolation. The gondwanatherians were mammals known only from teeth and some jaw fragments that lived in the southern continents alongside dinosaurs; here the entire cranium of a bizarre and badger-sized fossil mammal from the Cretaceous of Madagascar shows that gondwanatherians were related to the better-known multituberculates, a long-lived and successful group of now-extinct rodent-like mammals. Anatomy of a Gondwana mammal The gondwanatheres were mammals that lived the southern continents alongside the dinosaurs during the Late Cretaceous and early Paleocene. Known only from a few teeth and some jaw fragments, their appearance and evolutionary relationships remained obscure. The entire skull of a bizarre and badger-sized fossil mammal from the Cretaceous of Madagascar changes all that. Although almost certainly highly derived — as one would expect from a member of the unique endemic island fauna of Madagascar at that time — Vintana is clearly a gondwanathere. The anatomy of the herbivorous, large-eyed and agile creature shows that gondwanatheres were related to the better-known multituberculates, a long-lived and successful group of (now also extinct) rodent-like mammals.
CALIPSO Lidar Calibration at 532 nm: Version 4 Nighttime Algorithm
Data products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were recently updated following the implementation of new (version 4) calibration algorithms for all of the level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOP’s other radiometric calibration procedures – i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime – depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration has been significantly improved by raising the molecular normalization altitude from 30-34 km to 36-39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio (SNR) at these higher altitudes, the signal is now averaged over a larger number of samples using data from multiple adjacent granules. As well, an enhanced strategy for filtering the radiation-induced noise from high energy particles was adopted. Further, the meteorological model used in the earlier versions has been replaced by the improved MERRA-2 model. An aerosol scattering ratio of 1.01 ± 0.01 is now explicitly used for the calibration altitude. These modifications lead to globally revised calibration coefficients which are, on average, 2-3% lower than in previous data releases. Further, the new calibration procedure is shown to eliminate biases at high altitudes that were present in earlier versions and consequently leads to an improved representation of stratospheric aerosols. Validation results using airborne lidar measurements are also presented. Biases relative to collocated measurements acquired by the Langley Research Center (LaRC) airborne high spectral resolution lidar (HSRL) are reduced from 3.6% ± 2.2% in the version 3 data set to 1.6% ± 2.4 % in the version 4 release.
CALIPSO Lidar Calibration Algorithms. Part I: Nighttime 532-nm Parallel Channel and 532-nm Perpendicular Channel
The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission was launched in April 2006 and has continuously acquired collocated multisensor observations of the spatial and optical properties of clouds and aerosols in the earth’s atmosphere. The primary payload aboard CALIPSO is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which makes range-resolved measurements of elastic backscatter at 532 and 1064 nm and linear depolarization ratios at 532 nm. CALIOP measurements are important in reducing uncertainties that currently limit understanding of the global climate system, and it is essential that these measurements be accurately calibrated. This work describes the procedures used to calibrate the 532-nm measurements acquired during the nighttime portions of the CALIPSO orbits. Accurate nighttime calibration of the 532-nm parallel-channel data is fundamental to the success of the CALIOP measurement scheme, because the nighttime calibration is used to infer calibration across the day side of the orbits and all other channels are calibrated relative to the 532-nm parallel channel. The theoretical basis of the molecular normalization technique as applied to space-based lidar measurements is reviewed, and a comprehensive overview of the calibration algorithm implementation is provided. Also included is a description of a data filtering procedure that detects and removes spurious high-energy events that would otherwise introduce large errors into the calibration. Error estimates are derived and comparisons are made to validation data acquired by the NASA airborne high–spectral resolution lidar. Similar analyses are also presented for the 532-nm perpendicular-channel calibration technique.
CONTINENTAL INSECT BORINGS IN DINOSAUR BONE: EXAMPLES FROM THE LATE CRETACEOUS OF MADAGASCAR AND UTAH
Two new insect-related ichnogenera are reported in fossil dinosaur bones from Upper Cretaceous continental strata in Madagascar and Utah. Cubiculum ornatus n. igen. and isp. is described from numerous fossil bones in the Upper Cretaceous Maevarano Formation of northwestern Madagascar, and consists of hollow, ovoid chambers with concave flanks excavated into both spongy and compact bone. Traces similar in morphology to Cubiculum ornatus have been reported elsewhere in North America, Asia, Europe, and Africa in bones ranging in age from Jurassic to Pleistocene, and have been interpreted as pupal chambers constructed by carrion beetle larvae. Osteocallis mandibulus n. igen. and isp. is described in dinosaur bones from continental deposits of the Upper Cretaceous Maevarano Formation of Madagascar and the Upper Cretaceous Kaiparowits Formation of southern Utah. O. mandibulus consists of shallow, meandering surface trails, composed of numerous arcuate grooves, bored into compact (cortical) bone surfaces, and is tentatively interpreted as a feeding trace. Based on similar patterns of bioglyph preserved in both Cubiculum ornatus and Osteocallis mandibulus, the tracemaker is interpreted to be the same or similar for both borings. Given the recurrent association with animal remains, the tracemaker is furthermore presumed to be a necrophagous or osteophagous insect that used bone as a substrate for both reproduction (C. ornatus) and feeding (O. mandibulus).
A new cheilostome bryozoan from a dinosaur site in the Upper Cretaceous (Campanian) Judith River Formation of Montana
Few bryozoans have been described from the Cretaceous Western Interior Seaway (WIS), which is consistent with the low diversity of other typically stenohaline groups in this large expanse of relatively shallow marine water. Here we describe a new cheilostome bryozoan, Conopeum flumineum n. sp., based on well-preserved material from the Campanian Judith River Formation of the Upper Missouri River Breaks National Monument in north-central Montana. The new species shows strong morphological similarities with Conopeum seurati, a Recent species that is often categorized as brackish, but which is euryhaline and can also be found in marine and stenohaline environments. The new Campanian bryozoan species was found in a locality also containing fragmentary remains of dinosaurs and other terrestrial vertebrates, as well freshwater mollusks and terrestrial plant debris. The sedimentology and facies associations of the fossil-bearing site suggest that the depositional setting was a swamp or tidally influenced fluvial backwater on the Judith River coastal plain. The proximity of the site to the western shoreline of the WIS presumably made it susceptible to occasional marine flooding during storms or extreme tides. Previous occurrences of Conopeum in the Cretaceous of the Western Interior have also been associated with dinosaur remains, corroborating the very nearshore and at times even ‘upstream’ distribution of this euryhaline genus.
Late Cretaceous bird from Madagascar reveals unique development of beaks
Mesozoic birds display considerable diversity in size, flight adaptations and feather organization 1 – 4 , but exhibit relatively conserved patterns of beak shape and development 5 – 7 . Although Neornithine (that is, crown group) birds also exhibit constraint on facial development 8 , 9 , they have comparatively diverse beak morphologies associated with a range of feeding and behavioural ecologies, in contrast to Mesozoic birds. Here we describe a crow-sized stem bird, Falcatakely forsterae gen. et sp. nov., from the Late Cretaceous epoch of Madagascar that possesses a long and deep rostrum, an expression of beak morphology that was previously unknown among Mesozoic birds and is superficially similar to that of a variety of crown-group birds (for example, toucans). The rostrum of Falcatakely is composed of an expansive edentulous maxilla and a small tooth-bearing premaxilla. Morphometric analyses of individual bony elements and three-dimensional rostrum shape reveal the development of a neornithine-like facial anatomy despite the retention of a maxilla–premaxilla organization that is similar to that of nonavialan theropods. The patterning and increased height of the rostrum in Falcatakely reveals a degree of developmental lability and increased morphological disparity that was previously unknown in early branching avialans. Expression of this phenotype (and presumed ecology) in a stem bird underscores that consolidation to the neornithine-like, premaxilla-dominated rostrum was not an evolutionary prerequisite for beak enlargement. A crow-sized stem bird, Falcatakely forsterae , possesses a long and deep rostrum—a beak morphology that was previously unknown among Mesozoic birds and is similar to that of some crown-group birds, such as toucans.