Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
206 result(s) for "Rolain, Jean-Marc"
Sort by:
Culturing the human microbiota and culturomics
The gut microbiota has an important role in the maintenance of human health and in disease pathogenesis. This importance was realized through the advent of omics technologies and their application to improve our knowledge of the gut microbial ecosystem. In particular, the use of metagenomics has revealed the diversity of the gut microbiota, but it has also highlighted that the majority of bacteria in the gut remain uncultured. Culturomics was developed to culture and identify unknown bacteria that inhabit the human gut as a part of the rebirth of culture techniques in microbiology. Consisting of multiple culture conditions combined with the rapid identification of bacteria, the culturomic approach has enabled the culture of hundreds of new microorganisms that are associated with humans, providing exciting new perspectives on host–bacteria relationships. In this Review, we discuss why and how culturomics was developed. We describe how culturomics has extended our understanding of bacterial diversity and then explore how culturomics can be applied to the study of the human microbiota and the potential implications for human health.
Ongoing Revolution in Bacteriology: Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry
Background. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry accurately identifies both selected bacteria and bacteria in select clinical situations. It has not been evaluated for routine use in the clinic. Methods. We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria regardless of phylum or source of isolation. Discrepancies were resolved by 16S ribosomal RNA and rpo B gene sequence-based molecular identification. Colonies (4 spots per isolate directly deposited on the MALDI-TOF plate) were analyzed using an Autoflex II Bruker Daltonik mass spectrometer. Peptidic spectra were compared with the Bruker BioTyper database, version 2.0, and the identification score was noted. Delays and costs of identification were measured. Results. Of 1660 bacterial isolates analyzed, 95.4% were correctly identified by MALDI-TOF mass spectrometry; 84.1% were identified at the species level, and 11.3% were identified at the genus level. In most cases, absence of identification (2.8% of isolates) and erroneous identification (1.7% of isolates) were due to improper database entries. Accurate MALDI-TOF mass spectrometry identification was significantly correlated with having 10 reference spectra in the database (P=.01). The mean time required for MALDI-TOF mass spectrometry identification of 1 isolate was 6 minutes for an estimated 22%–32% cost of current methods of identification. Conclusions. MALDI-TOF mass spectrometry is a cost-effective, accurate method for routine identification of bacterial isolates in <1 h using a database comprising ⩾10 reference spectra per bacterial species and a ⩾1.9 identification score (Brucker system). It may replace Gram staining and biochemical identification in the near future.
Dissemination of the mcr-1 colistin resistance gene
In their Comment on the Article by Yi-Yun Liu and colleagues about the emergence of plasmid-mediated colistin resistance involving the mcr-1 gene from bacteria isolated in China,1 David Paterson and Patrick Harris2 referred to our finding of colistin resistance in two Escherichia coli isolates from a pig and a human being in Laos that were indistinguishable by pulsed-field gel electrophoresis.3 Our results, suggested animal to human transmission for which no known chromosomally encoded colistin resistance mechanisms were identified, raising the question of a similar mechanism of colistin resistance to that identified by Liu and colleagues.
The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges
Since 2015, the discovery of colistin resistance genes has been limited to the characterization of new mobile colistin resistance (mcr) gene variants. However, given the complexity of the mechanisms involved, there are many colistin-resistant bacterial strains whose mechanism remains unknown and whose exploitation requires complementary technologies. In this review, through the history of colistin, we underline the methods used over the last decades, both old and recent, to facilitate the discovery of the main colistin resistance mechanisms and how new technological approaches may help to improve the rapid and efficient exploration of new target genes. To accomplish this, a systematic search was carried out via PubMed and Google Scholar on published data concerning polymyxin resistance from 1950 to 2020 using terms most related to colistin. This review first explores the history of the discovery of the mechanisms of action and resistance to colistin, based on the technologies deployed. Then we focus on the most advanced technologies used, such as MALDI-TOF-MS, high throughput sequencing or the genetic toolbox. Finally, we outline promising new approaches, such as omics tools and CRISPR-Cas9, as well as the challenges they face. Much has been achieved since the discovery of polymyxins, through several innovative technologies. Nevertheless, colistin resistance mechanisms remains very complex.
Drug Repurposing to Fight Colistin and Carbapenem-Resistant Bacteria
The emergence of new resistance mechanisms, the failure of classical antibiotics in clinic, the decrease in the development of antibiotics in the industry are all challenges that lead us to consider new strategies for the treatment of infectious diseases. Indeed, in recent years controversy has intensified over strains resistant to carbapenem and/or colistin. Various therapeutic solutions are used to overcome administration of last line antibiotics. In this context, drug repurposing, which consists of using a non-antibiotic compound to treat multi-drug resistant bacteria (MDR), is encouraged. In this review, we first report what may have led to drug repurposing. Main definitions, advantages and drawbacks are summarized. Three major methods are described: phenotypic, computational and serendipity. In a second time we will focus on the current knowledge in drug repurposing for carbapenem and colistin-resistant bacteria with different studies describing repurposed compounds tested on Gram-negative bacteria. Furthermore, we show that drug combination therapies can increase successful by drug repurposing strategy. In conclusion, we discuss the pharmaceutical industries that have little interest in reprofiling drugs due to lack of profits. We also consider what a clinician might think of the indications of these uncommon biologists to treat MDR bacterial infections and avoid therapeutic impasses.
Application and Challenge of 3rd Generation Sequencing for Clinical Bacterial Studies
Over the past 25 years, the powerful combination of genome sequencing and bioinformatics analysis has played a crucial role in interpreting information encoded in bacterial genomes. High-throughput sequencing technologies have paved the way towards understanding an increasingly wide range of biological questions. This revolution has enabled advances in areas ranging from genome composition to how proteins interact with nucleic acids. This has created unprecedented opportunities through the integration of genomic data into clinics for the diagnosis of genetic traits associated with disease. Since then, these technologies have continued to evolve, and recently, long-read sequencing has overcome previous limitations in terms of accuracy, thus expanding its applications in genomics, transcriptomics and metagenomics. In this review, we describe a brief history of the bacterial genome sequencing revolution and its application in public health and molecular epidemiology. We present a chronology that encompasses the various technological developments: whole-genome shotgun sequencing, high-throughput sequencing, long-read sequencing. We mainly discuss the application of next-generation sequencing to decipher bacterial genomes. Secondly, we highlight how long-read sequencing technologies go beyond the limitations of traditional short-read sequencing. We intend to provide a description of the guiding principles of the 3rd generation sequencing applications and ongoing improvements in the field of microbial medical research.
Colistin: an update on the antibiotic of the 21st century
The emergence of multidrug-resistant Gram-negative bacteria that cause nosocomial infections is a growing problem worldwide. Colistin was first introduced in 1952 and was used until the early 1980s for the treatment of infections caused by Gram-negative bacilli. In vitro, colistin has demonstrated excellent activity against various Gram-negative rod-shaped bacteria, including multidrug-resistant Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. Recent clinical findings regarding colistin activity, pharmacokinetic properties, clinical uses, emerging resistance, toxicities and combination therapy have been reviewed. Recent approaches to the use of colistin in combination with other antibiotics hold promise for increased antibacterial efficacy. It is probable that colistin will be the 'last-line' therapeutic drug against multidrug-resistant Gram-negative pathogens in the 21st century.
Massive analysis of 64,628 bacterial genomes to decipher water reservoir and origin of mobile colistin resistance genes: is there another role for these enzymes?
Since 2015, new worrying colistin resistance mechanism, mediated by mcr -1 gene has been reported worldwide along with eight newly described variants but their source(s) and reservoir(s) remain largely unexplored. Here, we conducted a massive bioinformatic analysis of bacterial genomes to investigate the reservoir and origin of mcr variants. We identified 13’658 MCR-1 homologous sequences in 494 bacterial genera. Moreover, analysis of 64’628 bacterial genomes (60 bacterial genera and 1’047 species) allows identifying a total of 6’651 significant positive hits (coverage >90% and similarity >50%) with the nine MCR variants from 39 bacterial genera and more than 1’050 species. A high number of MCR-1 was identified in Escherichia coli (n = 862). Interestingly, while almost all variants were identified in bacteria from different sources (i.e. human, animal, and environment), the last variant, MCR-9, was exclusively detected in bacteria from human. Although these variants could be identified in bacteria from human and animal sources, we found plenty MCR variants in unsuspected bacteria from environmental origin, especially from water sources. The ubiquitous presence of mcr variants in bacteria from water likely suggests another role in the biosphere of these enzymes as an unknown defense system against natural antimicrobial peptides and/or bacteriophage predation.
Drug Repurposing in Medical Mycology: Identification of Compounds as Potential Antifungals to Overcome the Emergence of Multidrug-Resistant Fungi
Immunodepression, whether due to HIV infection or organ transplantation, has increased human vulnerability to fungal infections. These conditions have created an optimal environment for the emergence of opportunistic infections, which is concomitant to the increase in antifungal resistance. The use of conventional antifungal drugs as azoles and polyenes can lead to clinical failure, particularly in immunocompromised individuals. Difficulties related to treating fungal infections combined with the time required to develop new drugs, require urgent consideration of other therapeutic alternatives. Drug repurposing is one of the most promising and rapid solutions that the scientific and medical community can turn to, with low costs and safety advantages. To treat life-threatening resistant fungal infections, drug repurposing has led to the consideration of well-known and potential molecules as a last-line therapy. The aim of this review is to provide a summary of current antifungal compounds and their main resistance mechanisms, following by an overview of the antifungal activity of non-traditional antimicrobial drugs. We provide their eventual mechanisms of action and the synergistic combinations that improve the activity of current antifungal treatments. Finally, we discuss drug repurposing for the main emerging multidrug resistant (MDR) fungus, including the Candida auris, Aspergillus or Cryptococcus species.
Development of New Tools to Detect Colistin-Resistance among Enterobacteriaceae Strains
The recent discovery of the plasmid-mediated mcr-1 gene conferring resistance to colistin is of clinical concern. The worldwide screening of this resistance mechanism among samples of different origins has highlighted the urgent need to improve the detection of colistin-resistant isolates in clinical microbiology laboratories. Currently, phenotypic methods used to detect colistin resistance are not necessarily suitable as the main characteristic of the mcr genes is the low level of resistance that they confer, close to the clinical breakpoint recommended jointly by the CLSI and EUCAST expert systems (S ≤ 2 mg/L and R > 2 mg/L). In this context, susceptibility testing recommendations for polymyxins have evolved and are becoming difficult to implement in routine laboratory work. The large number of mechanisms and genes involved in colistin resistance limits the access to rapid detection by molecular biology. It is therefore necessary to implement well-defined protocols using specific tools to detect all colistin-resistant bacteria. This review aims to summarize the current clinical microbiology diagnosis techniques and their ability to detect all colistin resistance mechanisms and describe new tools specifically developed to assess plasmid-mediated colistin resistance. Phenotyping, susceptibility testing, and genotyping methods are presented, including an update on recent studies related to the development of specific techniques.