Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
70 result(s) for "Romac, Sarah"
Sort by:
Molecular diversity and distribution of marine fungi across 130 European environmental samples
Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal ‘OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments.
Intracellular Diversity of the V4 and V9 Regions of the 18S rRNA in Marine Protists (Radiolarians) Assessed by High-Throughput Sequencing
Metabarcoding is a powerful tool for exploring microbial diversity in the environment, but its accurate interpretation is impeded by diverse technical (e.g. PCR and sequencing errors) and biological biases (e.g. intra-individual polymorphism) that remain poorly understood. To help interpret environmental metabarcoding datasets, we investigated the intracellular diversity of the V4 and V9 regions of the 18S rRNA gene from Acantharia and Nassellaria (radiolarians) using 454 pyrosequencing. Individual cells of radiolarians were isolated, and PCRs were performed with generalist primers to amplify the V4 and V9 regions. Different denoising procedures were employed to filter the pyrosequenced raw amplicons (Acacia, AmpliconNoise, Linkage method). For each of the six isolated cells, an average of 541 V4 and 562 V9 amplicons assigned to radiolarians were obtained, from which one numerically dominant sequence and several minor variants were found. At the 97% identity, a diversity metrics commonly used in environmental surveys, up to 5 distinct OTUs were detected in a single cell. However, most amplicons grouped within a single OTU whereas other OTUs contained very few amplicons. Different analytical methods provided evidence that most minor variants forming different OTUs correspond to PCR and sequencing artifacts. Duplicate PCR and sequencing from the same DNA extract of a single cell had only 9 to 16% of unique amplicons in common, and alignment visualization of V4 and V9 amplicons showed that most minor variants contained substitutions in highly-conserved regions. We conclude that intracellular variability of the 18S rRNA in radiolarians is very limited despite its multi-copy nature and the existence of multiple nuclei in these protists. Our study recommends some technical guidelines to conservatively discard artificial amplicons from metabarcoding datasets, and thus properly assess the diversity and richness of protists in the environment.
Diel cycle of sea spray aerosol concentration
Sea spray aerosol (SSA) formation have a major role in the climate system, but measurements at a global-scale of this micro-scale process are highly challenging. We measured high-resolution temporal patterns of SSA number concentration over the Atlantic Ocean, Caribbean Sea, and the Pacific Ocean covering over 42,000 km. We discovered a ubiquitous 24-hour rhythm to the SSA number concentration, with concentrations increasing after sunrise, remaining higher during the day, and returning to predawn values after sunset. The presence of dominating continental aerosol transport can mask the SSA cycle. We did not find significant links between the diel cycle of SSA number concentration and diel variations of surface winds, atmospheric physical properties, radiation, pollution, nor oceanic physical properties. However, the daily mean sea surface temperature positively correlated with the magnitude of the day-to-nighttime increase in SSA concentration. Parallel diel patterns in particle sizes were also detected in near-surface waters attributed to variations in the size of particles smaller than ~1 µm. These variations may point to microbial day-to-night modulation of bubble-bursting dynamics as a possible cause of the SSA cycle. Sea spray aerosol (SSA) are an important way through which oceans can influence the atmosphere’s radiative properties. Here, the authors present measurements taken over a 42,000 km ship cruise in the Atlantic and Pacific Ocean and show that SSA number concentrations vary over a 24-hour cycle, possibly linked to surface water bubble-bursting dynamics.
Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests
High animal and plant richness in tropical rainforest communities has long intrigued naturalists. It is unknown if similar hyperdiversity patterns are reflected at the microbial scale with unicellular eukaryotes (protists). Here we show, using environmental metabarcoding of soil samples and a phylogeny-aware cleaning step, that protist communities in Neotropical rainforests are hyperdiverse and dominated by the parasitic Apicomplexa, which infect arthropods and other animals. These host-specific parasites potentially contribute to the high animal diversity in the forests by reducing population growth in a density-dependent manner. By contrast, too few operational taxonomic units (OTUs) of Oomycota were found to broadly drive high tropical tree diversity in a host-specific manner under the Janzen-Connell model. Extremely high OTU diversity and high heterogeneity between samples within the same forests suggest that protists, not arthropods, are the most diverse eukaryotes in tropical rainforests. Our data show that protists play a large role in tropical terrestrial ecosystems long viewed as being dominated by macroorganisms. Environmental metabarcoding of soil samples suggests that protists comprise the greatest eukaryotic diversity in tropical rainforests, and are dominated by phyla that parasitise arthropods and other animals.
An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region
The Internal Transcribed Spacer 2 (ITS2) rRNA gene is a commonly targeted genetic marker to assess diversity of Symbiodinium , a dinoflagellate genus of algal endosymbionts that is pervasively associated with marine invertebrates, and notably reef-building corals. Here we tested three commonly used ITS2 primer pairs (SYM_VAR_5.8S2/SYM_VAR_REV, ITSintfor2/ITSReverse, and ITS-DINO/ITS2Rev2) with regard to amplification specificity and sensitivity towards Symbiodinium , as well as sub-genera taxonomic bias. We tested these primers over a range of sample types including three coral species, coral surrounding water, reef surface water, and open ocean water to assess their suitability for use in large-scale next generation sequencing projects and to develop a standardised PCR protocol. We found the SYM_VAR_5.8S2/SYM_VAR_REV primers to perform superior to the other tested ITS2 primers. We therefore used this primer pair to develop a standardised PCR protocol. To do this, we tested the effect of PCR-to-PCR variation, annealing temperature, cycle number, and different polymerase systems on the PCR efficacy. The Symbiodinium ITS2 PCR protocol developed here delivers improved specificity and sensitivity towards Symbiodinium with apparent minimal sub-genera taxonomic bias across all sample types. In particular, the protocol’s ability to amplify Symbiodinium from a range of environmental sources will facilitate the study of Symbiodinium populations across biomes.
Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters
Prasinophytes clade VII is a group of pico/nano-planktonic green algae (division Chlorophyta) for which numerous ribosomal RNA (rRNA) sequences have been retrieved from the marine environment in the last 15 years. A large number of strains have also been isolated but have not yet received a formal taxonomic description. A phylogenetic analysis of available strains using both the nuclear 18S and plastidial 16S rRNA genes demonstrates that this group composes at least 10 different clades: A1–A7 and B1–B3. Analysis of sequences from the variable V9 region of the 18S rRNA gene collected during the Tara Oceans expedition and in the frame of the Ocean Sampling Day consortium reveal that clade VII is the dominant Chlorophyta group in oceanic waters, replacing Mamiellophyceae, which have this role in coastal waters. At some location, prasinophytes clade VII can even be the dominant photosynthetic eukaryote representing up to 80% of photosynthetic metabarcodes overall. B1 and A4 are the overall dominant clades and different clades seem to occupy distinct niches, for example, A6 is dominant in surface Mediterranean Sea waters, whereas A4 extend to high temperate latitudes. Our work demonstrates that prasinophytes clade VII constitute a highly diversified group, which is a key component of phytoplankton in open oceanic waters but has been neglected in the conceptualization of marine microbial diversity and carbon cycle.
Morphological traits and machine learning for genetic lineage prediction of two reef-building corals
Integrating multiple lines of evidence that support molecular taxonomy analysis has proven to be a robust method for species delimitation in scleractinian corals. However, morphology often conflicts with genetic approaches due to high phenotypic plasticity and convergence. Understanding morphological variation among species is crucial to studying coral distribution, life history, ecology, and evolution. Here, we present an application of Random Forest models for coral species identification based on morphological annotation of the corallum and corallites. We show that the integration of molecular and morphological trait analysis can be improved using machine learning. Morphological traits were documented for Porites and Pocillopora coral species that were collected and genotyped through genome-wide, genetical hierarchical clustering, and coalescence analyses for the Tara Pacific Expedition. While Porites only included three tentative species, most Pocillopora species were accounted by included specimens from the western Indian Ocean, tropical Southwestern Pacific, and southeast Polynesia. Two Random Forest models per genus were trained on the morphological annotations using the genetic lineage labels. One model was developed for in-situ image identification and used corallum traits measured from in-situ photographs. Another model for integrative species identification combined corallum and corallite data measured on scanning electron micrographs. Random Forest models outperformed traditional dimension reduction methods like PCA and FAMD followed by k-means and hierarchical clustering by classifying the correct genetic lineage despite morphological clusters overlapping. This machine learning approach is reproducible, cost-effective, and accessible, reducing the need for taxonomic expertise. It can complement molecular and phylogenetic studies and support image identification, highlighting its potential to advance a coral integrative taxonomy workflow.
Vampires in the oceans: predatory cercozoan amoebae in marine habitats
Vampire amoebae (vampyrellids) are predators of algae, fungi, protozoa and small metazoans known primarily from soils and in freshwater habitats. They are among the very few heterotrophic naked, filose and reticulose protists that have received some attention from a morphological and ecological point of view over the last few decades, because of the peculiar mode of feeding of known species. Yet, the true extent of their biodiversity remains largely unknown. Here we use a complementary approach of culturing and sequence database mining to address this issue, focusing our efforts on marine environments, where vampyrellids are very poorly known. We present 10 new vampyrellid isolates, 8 from marine or brackish sediments, and 2 from soil or freshwater sediment. Two of the former correspond to the genera Thalassomyxa Grell and Penardia Cash for which sequence data were previously unavailable. Small-subunit ribosomal DNA analysis confirms they are all related to previously sequenced vampyrellids. An exhaustive screening of the NCBI GenBank database and of 454 sequence data generated by the European BioMarKs consortium revealed hundreds of distinct environmental vampyrellid sequences. We show that vampyrellids are much more diverse than previously thought, especially in marine habitats. Our new isolates, which cover almost the full phylogenetic range of vampyrellid sequences revealed in this study, offer a rare opportunity to integrate data from environmental DNA surveys with phenotypic information. However, the very large genetic diversity we highlight within vampyrellids (especially in marine sediments and soils) contrasts with the paradoxically low morphological distinctiveness we observed across our isolates.
From short to long reads: enhanced protist diversity profiling via Nanopore metabarcoding
In the last decades, environmental metabarcoding has revolutionised biodiversity research, particularly for microbial organisms such as protists, enabling large-scale assessments of diversity and ecological patterns across time and space. With the advent of long-read sequencing, Nanopore-based metabarcoding represents a promising alternative to short-read approaches. Due to the limited number of available studies, the effectiveness of Nanopore sequencing - alone or in combination with short-read data - for assessing the biodiversity and ecological patterns of protists in different ecosystems is not yet sufficiently explored. Here, we present BaNaNA (Barcoding Nanopore Neat Annotator), a pipeline designed to generate high-quality OTUs and abundance estimates from Nanopore sequencing data. The performance of the pipeline was evaluated using a mock community as well as on marine and freshwater environmental samples to demonstrate its relevance for protist biodiversity and ecological studies. Our results show that BaNaNA generates high-quality full-length 18S rDNAOTUs from Nanopore long reads that are directly comparable to short-read V4-18S rDNAASVs, supporting their synergistic use in long-term biodiversity studies. While both approaches reveal similar overall community diversity, long-read OTUs provide greater taxonomic resolution, richer phylogenetic information enabling the discovery of new clades and yield fewer false positives. These advantages make long-read Nanopore metabarcoding not only a powerful cost effective complement, but also a reliable replacement to short-read methods. By providing a pipeline for processing Nanopore data, BaNaNA paves the way for a broader application of long-read Nanopore sequencing in protist ecology and biodiversity research.
Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages
Since the advent of DNA metabarcoding surveys, the planktonic realm is considered a treasure trove of diversity, inhabited by a small number of abundant taxa, and a hugely diverse and taxonomically uncharacterized consortium of rare species. Here we assess if the apparent underestimation of plankton diversity applies universally. We target planktonic foraminifera, a group of protists whose known morphological diversity is limited, taxonomically resolved and linked to ribosomal DNA barcodes. We generated a pyrosequencing dataset of ~100,000 partial 18S rRNA foraminiferal sequences from 32 size fractioned photic-zone plankton samples collected at 8 stations in the Indian and Atlantic Oceans during the Tara Oceans expedition (2009–2012). We identified 69 genetic types belonging to 41 morphotaxa in our metabarcoding dataset. The diversity saturated at local and regional scale as well as in the three size fractions and the two depths sampled indicating that the diversity of foraminifera is modest and finite. The large majority of the newly discovered lineages occur in the small size fraction, neglected by classical taxonomy. These unknown lineages dominate the bulk [>0.8 µm] size fraction, implying that a considerable part of the planktonic foraminifera community biomass has its origin in unknown lineages.