Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
49 result(s) for "Romine, Glen S."
Sort by:
Sensitivity of Northern Great Plains Convection Forecasts to Upstream and Downstream Forecast Errors
The role of earlier forecast errors on subsequent convection forecasts is evaluated for a northern Great Plains severe convective event on 11–12 June 2013 during the Mesoscale Predictability Experiment (MPEX) by applying the ensemble-based sensitivity technique to Weather Research and Forecasting (WRF) Model ensemble forecasts with explicit convection. This case was characterized by two distinct modes of convection located 150 km apart in western Nebraska and South Dakota, which formed on either side of an axis of high, lower-tropospheric equivalent potential temperature . Convection forecasts over both regions are found to be sensitive to the position of this axis. The convection in Nebraska is sensitive to the position of the western edge of the axis near an upstream dryline, which modulates the preconvective prior to the diurnal maximum. In contrast, the convection in South Dakota is sensitive to the position of the eastern edge of the axis near a cold front, which also modulates the preconvective in that location. The position of the axis is modulated by the positions of both upstream and downstream mid- to upper-tropospheric potential vorticity anomalies, and can be traced backward in time to the initial conditions. Dropsondes sampling the region prior to convective initiation indicate that ensemble members with better representations of upstream conditions in sensitive regions are associated with better convective forecasts over Nebraska.
A Comparison of Neural-Network and Surrogate-Severe Probabilistic Convective Hazard Guidance Derived from a Convection-Allowing Model
A feed-forward neural network (NN) was trained to produce gridded probabilistic convective hazard predictions over the contiguous United States. Input fields to the NN included 174 predictors, derived from 38 variables output by 497 convection-allowing model forecasts, with observed severe storm reports used for training and verification. These NN probability forecasts (NNPFs) were compared to surrogate-severe probability forecasts (SSPFs), generated by smoothing a field of surrogate reports derived with updraft helicity (UH). NNPFs and SSPFs were produced each forecast hour on an 80-km grid, with forecasts valid for the occurrence of any severe weather report within 40 or 120 km, and 2 h, of each 80-km grid box. NNPFs were superior to SSPFs, producing statistically significant improvements in forecast reliability and resolution. Additionally, NNPFs retained more large magnitude probabilities (>50%) compared to SSPFs since NNPFs did not use spatial smoothing, improving forecast sharpness. NNPFs were most skillful relative to SSPFs when predicting hazards on larger scales (e.g., 120 vs 40 km) and in situations where using UH was detrimental to forecast skill. These included model spinup, nocturnal periods, and regions and environments where supercells were less common, such as the western and eastern United States and high-shear, low-CAPE regimes. NNPFs trained with fewer predictors were more skillful than SSPFs, but not as skillful as the full-predictor NNPFs, with predictor importance being a function of forecast lead time. Placing NNPF skill in the context of existing baselines is a first step toward integrating machine learning–based forecasts into the operational forecasting process.
Toward Unifying Short-Term and Next-Day Convection-Allowing Ensemble Forecast Systems with a Continuously Cycling 3-km Ensemble Kalman Filter over the Entire Conterminous United States
Using the Weather Research and Forecasting Model, 80-member ensemble Kalman filter (EnKF) analyses with 3-km horizontal grid spacing were produced over the entire conterminous United States (CONUS) for 4 weeks using 1-h continuous cycling. For comparison, similarly configured EnKF analyses with 15-km horizontal grid spacing were also produced. At 0000 UTC, 15- and 3-km EnKF analyses initialized 36-h, 3-km, 10-member ensemble forecasts that were verified with a focus on precipitation. Additionally, forecasts were initialized from operational Global Ensemble Forecast System (GEFS) initial conditions (ICs) and experimental “blended” ICs produced by combining large scales from GEFS ICs with small scales from EnKF analyses using a low-pass filter. The EnKFs had stable climates with generally small biases, and precipitation forecasts initialized from 3-km EnKF analyses were more skillful and reliable than those initialized from downscaled GEFS and 15-km EnKF ICs through 12–18 and 6–12 h, respectively. Conversely, after 18 h, GEFS-initialized precipitation forecasts were better than EnKF-initialized precipitation forecasts. Blended 3-km ICs reflected the respective strengths of both GEFS and high-resolution EnKF ICs and yielded the best performance considering all times: blended 3-km ICs led to short-term forecasts with similar or better skill and reliability than those initialized from unblended 3-km EnKF analyses and ~18–36-h forecasts possessing comparable quality as GEFS-initialized forecasts. This work likely represents the first time a convection-allowing EnKF has been continuously cycled over a region as large as the entire CONUS, and results suggest blending high-resolution EnKF analyses with low-resolution global fields can potentially unify short-term and next-day convection-allowing ensemble forecast systems under a common framework.
THE WEATHER RESEARCH AND FORECASTING MODEL
Since its initial release in 2000, the Weather Research and Forecasting (WRF) Model has become one of the world’s most widely used numerical weather prediction models. Designed to serve both research and operational needs, it has grown to offer a spectrum of options and capabilities for a wide range of applications. In addition, it underlies a number of tailored systems that address Earth system modeling beyond weather. While the WRF Model has a centralized support effort, it has become a truly community model, driven by the developments and contributions of an active worldwide user base. The WRF Model sees significant use for operational forecasting, and its research implementations are pushing the boundaries of finescale atmospheric simulation. Future model directions include developments in physics, exploiting emerging compute technologies, and ever-innovative applications. From its contributions to research, forecasting, educational, and commercial efforts worldwide, the WRF Model has made a significant mark on numerical weather prediction and atmospheric science.
Impacts of Targeted AERI and Doppler Lidar Wind Retrievals on Short-Term Forecasts of the Initiation and Early Evolution of Thunderstorms
The ability of Atmospheric Emitted Radiance Interferometer (AERI) and Doppler lidar (DL) wind profile observations to impact short-term forecasts of convection is explored by assimilating retrievals into a partially cycled convection-allowing ensemble analysis and forecast system. AERI and DL retrievals were obtained over 12 days using a mobile platform that was deployed in the preconvective and near-storm environments of thunderstorms during the afternoon in the U.S. Great Plains. The observation locations were guided by real-time ensemble sensitivity analysis (ESA) fields. AERI retrievals of temperature and dewpoint and DL retrievals of the horizontal wind components were assimilated into a control experiment that only assimilated conventional observations. Using the fractions skill score within 25-km neighborhoods, it is found that the assimilation of the AERI and DL retrievals results in far more times when the forecasts are improved than degraded in the 6-h forecast period. However, statistical confidence in the improvements often is not high and little to no relationships between the ESA fields and the actual changes in spread and skill is found. But, the focus on convective initiation and early convective evolution—a challenging forecast problem—and the fact that frequent improvements were seen despite observations from only one system over a limited period, provides encouragement to continue exploring the benefits of ground-based profilers to supplement the current upper-air observing system for severe weather forecasting applications.
Representing Forecast Error in a Convection-Permitting Ensemble System
Ensembles provide an opportunity to greatly improve short-term prediction of local weather hazards, yet generating reliable predictions remain a significant challenge. In particular, convection-permitting ensemble forecast systems (CPEFSs) have persistent problems with underdispersion. Representing initial and or lateral boundary condition uncertainty along with forecast model error provides a foundation for building a more dependable CPEFS, but the best practice for ensemble system design is not well established. Several configurations of CPEFSs are examined where ensemble forecasts are nested within a larger domain, drawing initial conditions from a downscaled, continuously cycled, ensemble data assimilation system that provides state-dependent initial condition uncertainty. The control ensemble forecast, with initial condition uncertainty only, is skillful but underdispersive. To improve the reliability of the ensemble forecasts, the control ensemble is supplemented with 1) perturbed lateral boundary conditions; or, model error representation using either 2) stochastic kinetic energy backscatter or 3) stochastically perturbed parameterization tendencies. Forecasts are evaluated against stage IV accumulated precipitation analyses and radiosonde observations. Perturbed ensemble forecasts are also compared to the control forecast to assess the relative impact from adding forecast perturbations. For precipitation forecasts, all perturbation approaches improve ensemble reliability relative to the control CPEFS. Deterministic ensemble member forecast skill, verified against radiosonde observations, decreases when forecast perturbations are added, while ensemble mean forecasts remain similarly skillful to the control.
Displacement Error Characteristics of 500-hPa Cutoff Lows in Operational GFS Forecasts
Cutoff lows are often associated with high-impact weather; therefore, it is critical that operational numerical weather prediction systems accurately represent the evolution of these features. However, medium-range forecasts of upper-level features using the Global Forecast System (GFS) are often subjectively characterized by excessive synoptic progressiveness, i.e., a tendency to advance troughs and cutoff lows too quickly downstream. To better understand synoptic progressiveness errors, this research quantifies seven years of 500-hPa cutoff low position errors over the globe, with the goal of objectively identifying regions where synoptic progressiveness errors are common and how frequently these errors occur. Specifically, 500-hPa features are identified and tracked in 0–240-h 0.25° GFS forecasts during April 2015–March 2022 using an objective cutoff low and trough identification scheme and compared to corresponding 500-hPa GFS analyses. In the Northern Hemisphere, cutoff lows are generally underrepresented in forecasts compared to verifying analyses, particularly over continental midlatitude regions. Features identified in short- to long-range forecasts are generally associated with eastward zonal position errors over the conterminous United States and northern Asia, particularly during the spring and autumn. Similarly, cutoff lows over the Southern Hemisphere midlatitudes are characterized by an eastward displacement bias during all seasons.
NCAR’S REAL-TIME CONVECTION-ALLOWING ENSEMBLE PROJECT
Beginning 7 April 2015, scientists at the U.S. National Center for Atmospheric Research (NCAR) began producing daily, real-time, experimental, 10-member ensemble forecasts with 3-km horizontal grid spacing across the entire conterminous United States. Graphical forecast products were posted in real time to the Internet, where they attracted a large following from both forecasters and researchers across government, academia, and the private sector. Although these forecasts were initially planned to terminate after one year, the project was extended through 30 December 2017 because of the enthusiastic community response. This article details the motivation for the NCAR ensemble project and describes the project’s impacts throughout the meteorological community. Classroom and operational use of the NCAR ensemble are discussed in addition to the diverse application of NCAR ensemble output for research purposes. Furthermore, some performance statistics are provided, and the NCAR ensemble website and data visualization approach are described. We hope the NCAR ensemble’s success will motivate additional experimental forecast demonstrations that transcend current operational capabilities, as forward-looking forecast systems are needed to accelerate operational development and provide students, young scientists, and forecasters with glimpses of what future modeling systems may look like. Additionally, the NCAR ensemble dataset is publicly available and can be used for meaningful research endeavors concerning many meteorological topics.
NCAR’s Experimental Real-Time Convection-Allowing Ensemble Prediction System
This expository paper documents an experimental, real-time, 10-member, 3-km, convection-allowing ensemble prediction system (EPS) developed at the National Center for Atmospheric Research (NCAR) in spring 2015. The EPS is particularly unique in that continuously cycling, limited-area, mesoscale ensemble Kalman filter analyses provide diverse initial conditions. In addition to describing the EPS configurations, initial forecast assessments are presented that suggest the EPS can provide valuable severe weather guidance and skillful predictions of precipitation. The EPS output is available to operational forecasters, many of whom have incorporated the products into their toolboxes. Given such rapid embrace of an experimental system by the operational community, acceleration of convection-allowing EPS development is encouraged.
Sensitivity of Central Oklahoma Convection Forecasts to Upstream Potential Vorticity Anomalies during Two Strongly Forced Cases during MPEX
The role of upstream subsynoptic forecast errors on forecasts of two different central Oklahoma severe convection events (19 and 31 May 2013) characterized by strong synoptic forcing during the Mesoscale Predictability Experiment (MPEX) are evaluated by applying the ensemble-based sensitivity technique to WRF ensemble forecasts with explicit convection. During both cases, the forecast of the timing and intensity of convection over central Oklahoma is modulated by the southward extent of upstream midtropospheric potential vorticity anomalies that are moving through the base of a larger-scale upstream trough but pass by central Oklahoma prior to convective initiation. In addition, the convection forecasts are also sensitive to the position of lower-tropospheric boundaries, such that moving the boundaries in a manner that would lead to increased equivalent potential temperature over central Oklahoma prior to convective initiation leads to more precipitation. Statistical PV inversion and correlation calculations suggest that the midtropospheric PV and near-surface boundary sensitivities are not independent; the winds associated with the PV error can modulate the position of the lower-tropospheric boundary through advection in a manner consistent with the implied sensitivity. As a consequence, it appears that reducing the uncertainty in specific upstream subsynoptic features prior to convective initiation could improve subsequent forecasts of severe convection.