Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
331 result(s) for "Rong, Lijun"
Sort by:
Lignans and Their Derivatives from Plants as Antivirals
Lignans are widely produced by various plant species; they are a class of natural products that share structural similarity. They usually contain a core scaffold that is formed by two or more phenylpropanoid units. Lignans possess diverse pharmacological properties, including their antiviral activities that have been reported in recent years. This review discusses the distribution of lignans in nature according to their structural classification, and it provides a comprehensive summary of their antiviral activities. Among them, two types of antiviral lignans—podophyllotoxin and bicyclol, which are used to treat venereal warts and chronic hepatitis B (CHB) in clinical, serve as examples of using lignans for antivirals—are discussed in some detail. Prospects of lignans in antiviral drug discovery are also discussed.
Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants
Vaccine hesitancy and emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) escaping vaccine-induced immune responses highlight the urgency for new COVID-19 therapeutics. Engineered angiotensin-converting enzyme 2 (ACE2) proteins with augmented binding affinities for SARS-CoV-2 spike (S) protein may prove to be especially efficacious against multiple variants. Using molecular dynamics simulations and functional assays, we show that three amino acid substitutions in an engineered soluble ACE2 protein markedly augmented the affinity for the S protein of the SARS-CoV-2 WA-1/2020 isolate and multiple VOCs: B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). In humanized K18-hACE2 mice infected with the SARS-CoV-2 WA-1/2020 or P.1 variant, prophylactic and therapeutic injections of soluble ACE22.v2.4-IgG1 prevented lung vascular injury and edema formation, essential features of CoV-2-induced SARS, and above all improved survival. These studies demonstrate broad efficacy in vivo of an engineered ACE2 decoy against SARS-CoV-2 variants in mice and point to its therapeutic potential.Second-generation engineered soluble ACE2 proteins display enhanced binding to the spike protein of SARS-CoV-2 and operate as ‘decoys’ that interfere with viral infection, reduce lung injury and lower mortality in mouse models.
Competitive Cooperation of Hemagglutinin and Neuraminidase during Influenza A Virus Entry
The hemagglutinin (HA) and neuraminidase (NA) of influenza A virus possess antagonistic activities on interaction with sialic acid (SA), which is the receptor for virus attachment. HA binds SA through its receptor-binding sites, while NA is a receptor-destroying enzyme by removing SAs. The function of HA during virus entry has been extensively investigated, however, examination of NA has long been focused to its role in the exit of progeny virus from infected cells, and the role of NA in the entry process is still under-appreciated. This review summarizes the current understanding of the roles of HA and NA in relation to each other during virus entry.
Balancing Host Defense and Viral Tolerance for the Development of Next-Generation Broad-Spectrum Antiviral Agents
The human immune system has evolved to cope with various virus infections using two major strategies: host defense and viral tolerance. The host defense relies on the innate and adaptive immune responses to control virus replication, while the viral tolerance allows sufficient virus replication in the host with minimal or no clinical signs. Generally, a balanced host defense and viral tolerance can guarantee health from infections, while disturbed immune homeostasis usually results in diseases. It is desirable to develop drugs/therapeutics to enhance the invulnerability of host immune equilibrium to combat viral infections. In this review, we summarize the advanced understanding on mechanisms of both the host defense against and tolerance to virus infections, and therapeutic agents/approaches that work by modulating the balance between host defense and tolerance.
Expanding the tolerance of segmented Influenza A Virus genome using a balance compensation strategy
Reporter viruses provide powerful tools for both basic and applied virology studies, however, the creation and exploitation of reporter influenza A viruses (IAVs) have been hindered by the limited tolerance of the segmented genome to exogenous modifications. Interestingly, our previous study has demonstrated the underlying mechanism that foreign insertions reduce the replication/transcription capacity of the modified segment, impairing the delicate balance among the multiple segments during IAV infection. In the present study, we developed a “balance compensation” strategy by incorporating additional compensatory mutations during initial construction of recombinant IAVs to expand the tolerance of IAV genome. As a proof of concept, promoter-enhancing mutations were introduced within the modified segment to rectify the segments imbalance of a reporter influenza PR8-NS-Gluc virus, while directed optimization of the recombinant IAV was successfully achieved. Further, we generated recombinant IAVs expressing a much larger firefly luciferase (Fluc) by coupling with a much stronger compensatory enhancement, and established robust Fluc-based live-imaging mouse models of IAV infection. Our strategy feasibly expands the tolerance for foreign gene insertions in the segmented IAV genome, which opens up better opportunities to develop more versatile reporter IAVs as well as live attenuated influenza virus-based vaccines for other important human pathogens.
LAYN Is a Prognostic Biomarker and Correlated With Immune Infiltrates in Gastric and Colon Cancers
Layilin (LAYN) is a critical gene that regulates T cell function. However, the correlations of LAYN to prognosis and tumor-infiltrating lymphocytes in different cancers remain unclear. LAYN expression was analyzed via the Oncomine database and Tumor Immune Estimation Resource (TIMER) site. We evaluated the influence of LAYN on clinical prognosis using Kaplan-Meier plotter, the PrognoScan database and Gene Expression Profiling Interactive Analysis (GEPIA). The correlations between LAYN and cancer immune infiltrates was investigated via TIMER. In addition, correlations between LAYN expression and gene marker sets of immune infiltrates were analyzed by TIMER and GEPIA. A cohort (GSE17536) of colorectal cancer patients showed that high LAYN expression was associated with poorer overall survival (OS), disease-specific survival (DSS), and disease-free survival (DFS). In addition, high LAYN expression was significantly correlated with poor OS and progression-free survival (PFS) in gastric cancers (OS HR = 1.97, = 3.6e-10; PFS HR = 2.12, = 2.3e-10). Moreover, LAYN significantly impacts the prognosis of diverse cancers via The Cancer Genome Atlas (TCGA). Specifically, high LAYN expression was correlated with worse OS and PFS in stage 2 to 4 but not stage 1 and stage N0 gastric cancer patients ( = 0.28, 0.34; = 0.073, 0.092). LAYN expression was positively correlated with infiltrating levels of CD4+ T and CD8+ T cells, macrophages, neutrophils, and dendritic cells (DCs) in colon adenocarcinoma (COAD) and stomach adenocarcinoma (STAD). LAYN expression showed strong correlations with diverse immune marker sets in COAD and STAD. These findings suggest that LAYN is correlated with prognosis and immune infiltrating levels of, including those of CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DCs in multiple cancers, especially in colon and gastric cancer patients. In addition, LAYN expression potentially contributes to regulation of tumor-associated macrophages (TAMs), DCs, T cell exhaustion and Tregs in colon and gastric cancer. These findings suggest that LAYN can be used as a prognostic biomarker for determining prognosis and immune infiltration in gastric and colon cancers.
Small Molecule Inhibitors of Influenza Virus Entry
Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.
Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases
Background In the urgent campaign to develop therapeutics against SARS-CoV-2, natural products have been an important source of new lead compounds. Results We herein identified two natural products, ginkgolic acid and anacardic acid, as inhibitors using a high-throughput screen targeting the SARS-CoV-2 papain-like protease (PL pro ). Moreover, our study demonstrated that the two hit compounds are dual inhibitors targeting the SARS-CoV-2 3-chymotrypsin-like protease (3CL pro ) in addition to PL pro . A mechanism of action study using enzyme kinetics further characterized the two compounds as irreversible inhibitors against both 3CL pro and PL pro . Significantly, both identified compounds inhibit SARS-CoV-2 replication in vitro at nontoxic concentrations. Conclusions Our finding provides two novel natural products as promising SARS-CoV-2 antivirals.
Selective Degradation and Inhibition of SARS-CoV-2 3CLpro by MMP14 Reveals a Novel Strategy for COVID-19 Therapeutics
Novel therapies to treat infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of respiratory coronavirus disease 2019 (COVID-19), would be of great clinical value to combat the current and future pandemics. Two viral proteases, papain-like protease (PLpro) and the main protease 3-chymotrypsin-like protease (3CLpro), are vital in processing the SARS-CoV-2 polyproteins (pp1a and pp1ab) and in releasing 16 nonstructural proteins, making them attractive antiviral drug targets. In this study, we investigated the degradation of the SARS-CoV-2 main protease 3CLpro by matrix metalloproteinase-14 (MMP14). MMP14 is known to recognize over 10 distinct substrate cleavage sequences. Through sequence analysis, we identified 17 and 10 putative MMP14 cleavage motifs within the SARS-CoV-2 3CLpro and PLpro proteases, respectively. Despite the presence of potential sites in both proteins, our in vitro proteolysis assays demonstrated that MMP14 selectively binds to and degrades 3CLpro, but not PLpro. This selective proteolysis by MMP14 results in the complete loss of 3CLpro enzymatic activity. In addition, SARS-CoV-2 pseudovirus replication was inhibited in 293 T cells when either full-length MMP14 or its catalytic domain (cat-MMP14) were overexpressed, presumably due to 3CLpro degradation by MMP14. Finally, to prevent MMP14 from degrading off-target proteins, we propose a new recombinant pro-PL-MMP14 construct that can be activated only by another SARS-CoV-2 protease, PLpro. These findings could open the potential of an alternative therapeutic strategy against SARS-CoV-2 infection.
An ACE2 decoy can be administered by inhalation and potently targets omicron variants of SARS‐CoV‐2
Monoclonal antibodies targeting the SARS‐CoV‐2 spike (S) neutralize infection and are efficacious for the treatment of COVID‐19. However, SARS‐CoV‐2 variants, notably sublineages of B.1.1.529/omicron, have emerged that escape antibodies in clinical use. As an alternative, soluble decoy receptors based on the host entry receptor ACE2 broadly bind and block S from SARS‐CoV‐2 variants and related betacoronaviruses. The high‐affinity and catalytically active decoy sACE2 2 .v2.4‐IgG1 was previously shown to be effective against SARS‐CoV‐2 variants when administered intravenously. Here, inhalation of aerosolized sACE2 2 .v2.4‐IgG1 increased survival and ameliorated lung injury in K18‐hACE2 mice inoculated with P.1/gamma virus. Loss of catalytic activity reduced the decoy's therapeutic efficacy, which was further confirmed by intravenous administration, supporting dual mechanisms of action: direct blocking of S and turnover of ACE2 substrates associated with lung injury and inflammation. Furthermore, sACE2 2 .v2.4‐IgG1 tightly binds and neutralizes BA.1, BA.2, and BA.4/BA.5 omicron and protects K18‐hACE2 mice inoculated with a high dose of BA.1 omicron virus. Overall, the therapeutic potential of sACE2 2 .v2.4‐IgG1 is demonstrated by the inhalation route and broad neutralization potency persists against highly divergent SARS‐CoV‐2 variants. Synopsis SARS‐CoV‐2 infects cells via interactions between the viral Spike and ACE2 on host cells. A soluble derivative of ACE2 that is engineered for tight Spike affinity is effective against newly circulating SARS‐CoV‐2 variants and is efficacious through multiple mechanisms and routes of administration. An engineered decoy receptor, sACE22.v2.4‐IgG1, binds tightly to Spike proteins and blocks replication in vitro and in vivo of SARS‐CoV‐2 omicron variants. Proteolytic activity of the decoy receptor contributes to its therapeutic efficacy to increase survival of SARS‐CoV‐2 infected K18‐hACE2 transgenic mice. The decoy receptor is therapeutically effective via intravenous infusion and inhalation routes. Graphical Abstract SARS‐CoV‐2 infects cells via interactions between the viral Spike and ACE2 on host cells. A soluble derivative of ACE2 that is engineered for tight Spike affinity is effective against newly circulating SARS‐CoV‐2 variants and is efficacious through multiple mechanisms and routes of administration.