Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
49
result(s) for
"Roni Rosenfeld"
Sort by:
Real-time forecasting of data revisions in epidemic surveillance streams
by
Wilder, Bryan
,
Tang, Jingjing
,
Rosenfeld, Roni
in
Computational Biology
,
COVID-19 - epidemiology
,
Dengue - epidemiology
2025
Epidemic data streams undergo frequent revisions due to reporting delays (“backfill”) and other factors. Relying on tentative surveillance values can seriously degrade the quality of situational awareness, forecasting accuracy and decision-making. We introduce Delphi Revision Forecast (Delphi-RF), a real-time data revision forecasting framework using nonparametric quantile regression, applicable to both counts and proportions (fractions) in public health reporting. By incorporating all available revisions up to a given estimation date, Delphi-RF models revision dynamics and generates distributional forecasts of finalized surveillance values. Applied to daily COVID-19 data (insurance claims, antigen tests, confirmed cases) and weekly dengue and influenza-like illness (ILI) case counts, Delphi-RF delivers accurate revision forecasts, particularly in early reporting stages. In addition, it improves computational efficiency by more than 10-100x compared to existing methods, making it a scalable solution for real-time public health surveillance.
Journal Article
Federated epidemic surveillance
by
Wilder, Bryan
,
Lyu, Ruiqi
,
Rosenfeld, Roni
in
Computational Biology - methods
,
COVID-19
,
Data transmission
2025
Epidemic surveillance is a challenging task, especially when crucial data is fragmented across institutions and data custodians are unable or unwilling to share it. This study aims to explore the feasibility of a simple federated surveillance approach. We conduct hypothesis tests on count data behind each custodian’s firewall and then combine p -values from these tests using techniques from meta-analysis. We propose a hypothesis testing framework to identify surges in epidemic-related data streams and conduct experiments on real and semi-synthetic data to assess the power of different p -value combination methods to detect surges without needing to combine or share the underlying counts. Our findings show that relatively simple combination methods achieve a high degree of fidelity and suggest that infectious disease outbreaks can be detected without needing to share or even aggregate data across institutions.
Journal Article
A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States
by
Yamana, Teresa K.
,
Reich, Nicholas G.
,
Tushar, Abhinav
in
60 APPLIED LIFE SCIENCES
,
Accuracy
,
Biological Science
2019
Influenza infects an estimated 9–35 million individuals each year in the United States and is a contributing cause for between 12,000 and 56,000 deaths annually. Seasonal outbreaks of influenza are common in temperate regions of the world, with highest incidence typically occurring in colder and drier months of the year. Real-time forecasts of influenza transmission can inform public health response to outbreaks. We present the results of a multiinstitution collaborative effort to standardize the collection and evaluation of forecasting models for influenza in the United States for the 2010/2011 through 2016/2017 influenza seasons. For these seven seasons, we assembled weekly real-time forecasts of seven targets of public health interest from 22 different models. We compared forecast accuracy of each model relative to a historical baseline seasonal average. Across all regions of the United States, over half of the models showed consistently better performance than the historical baseline when forecasting incidence of influenza-like illness 1 wk, 2 wk, and 3 wk ahead of available data and when forecasting the timing and magnitude of the seasonal peak. In some regions, delays in data reporting were strongly and negatively associated with forecast accuracy. More timely reporting and an improved overall accessibility to novel and traditional data sources are needed to improve forecasting accuracy and its integration with real-time public health decision making.
Journal Article
Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S
by
Yamana, Teresa K.
,
Reich, Nicholas G.
,
Tushar, Abhinav
in
Analytical methods
,
BASIC BIOLOGICAL SCIENCES
,
Biological Science
2019
Seasonal influenza results in substantial annual morbidity and mortality in the United States and worldwide. Accurate forecasts of key features of influenza epidemics, such as the timing and severity of the peak incidence in a given season, can inform public health response to outbreaks. As part of ongoing efforts to incorporate data and advanced analytical methods into public health decision-making, the United States Centers for Disease Control and Prevention (CDC) has organized seasonal influenza forecasting challenges since the 2013/2014 season. In the 2017/2018 season, 22 teams participated. A subset of four teams created a research consortium called the FluSight Network in early 2017. During the 2017/2018 season they worked together to produce a collaborative multi-model ensemble that combined 21 separate component models into a single model using a machine learning technique called stacking. This approach creates a weighted average of predictive densities where the weight for each component is determined by maximizing overall ensemble accuracy over past seasons. In the 2017/2018 influenza season, one of the largest seasonal outbreaks in the last 15 years, this multi-model ensemble performed better on average than all individual component models and placed second overall in the CDC challenge. It also outperformed the baseline multi-model ensemble created by the CDC that took a simple average of all models submitted to the forecasting challenge. This project shows that collaborative efforts between research teams to develop ensemble forecasting approaches can bring measurable improvements in forecast accuracy and important reductions in the variability of performance from year to year. Efforts such as this, that emphasize real-time testing and evaluation of forecasting models and facilitate the close collaboration between public health officials and modeling researchers, are essential to improving our understanding of how best to use forecasts to improve public health response to seasonal and emerging epidemic threats.
Journal Article
Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions
by
Brooks, Logan C.
,
Rosenfeld, Roni
,
Tibshirani, Ryan J.
in
Biology
,
Centers for Disease Control and Prevention (U.S.)
,
Communicable Diseases
2018
Accurate and reliable forecasts of seasonal epidemics of infectious disease can assist in the design of countermeasures and increase public awareness and preparedness. This article describes two main contributions we made recently toward this goal: a novel approach to probabilistic modeling of surveillance time series based on \"delta densities\", and an optimization scheme for combining output from multiple forecasting methods into an adaptively weighted ensemble. Delta densities describe the probability distribution of the change between one observation and the next, conditioned on available data; chaining together nonparametric estimates of these distributions yields a model for an entire trajectory. Corresponding distributional forecasts cover more observed events than alternatives that treat the whole season as a unit, and improve upon multiple evaluation metrics when extracting key targets of interest to public health officials. Adaptively weighted ensembles integrate the results of multiple forecasting methods, such as delta density, using weights that can change from situation to situation. We treat selection of optimal weightings across forecasting methods as a separate estimation task, and describe an estimation procedure based on optimizing cross-validation performance. We consider some details of the data generation process, including data revisions and holiday effects, both in the construction of these forecasting methods and when performing retrospective evaluation. The delta density method and an adaptively weighted ensemble of other forecasting methods each improve significantly on the next best ensemble component when applied separately, and achieve even better cross-validated performance when used in conjunction. We submitted real-time forecasts based on these contributions as part of CDC's 2015/2016 FluSight Collaborative Comparison. Among the fourteen submissions that season, this system was ranked by CDC as the most accurate.
Journal Article
Flexible Modeling of Epidemics with an Empirical Bayes Framework
by
Brooks, Logan C.
,
Rosenfeld, Roni
,
Tibshirani, Ryan J.
in
Bayes Theorem
,
Bayesian statistical decision theory
,
Centers for Disease Control and Prevention (U.S.)
2015
Seasonal influenza epidemics cause consistent, considerable, widespread loss annually in terms of economic burden, morbidity, and mortality. With access to accurate and reliable forecasts of a current or upcoming influenza epidemic's behavior, policy makers can design and implement more effective countermeasures. This past year, the Centers for Disease Control and Prevention hosted the \"Predict the Influenza Season Challenge\", with the task of predicting key epidemiological measures for the 2013-2014 U.S. influenza season with the help of digital surveillance data. We developed a framework for in-season forecasts of epidemics using a semiparametric Empirical Bayes framework, and applied it to predict the weekly percentage of outpatient doctors visits for influenza-like illness, and the season onset, duration, peak time, and peak height, with and without using Google Flu Trends data. Previous work on epidemic modeling has focused on developing mechanistic models of disease behavior and applying time series tools to explain historical data. However, tailoring these models to certain types of surveillance data can be challenging, and overly complex models with many parameters can compromise forecasting ability. Our approach instead produces possibilities for the epidemic curve of the season of interest using modified versions of data from previous seasons, allowing for reasonable variations in the timing, pace, and intensity of the seasonal epidemics, as well as noise in observations. Since the framework does not make strict domain-specific assumptions, it can easily be applied to some other diseases with seasonal epidemics. This method produces a complete posterior distribution over epidemic curves, rather than, for example, solely point predictions of forecasting targets. We report prospective influenza-like-illness forecasts made for the 2013-2014 U.S. influenza season, and compare the framework's cross-validated prediction error on historical data to that of a variety of simpler baseline predictors.
Journal Article
Recalibrating probabilistic forecasts of epidemics
by
Tibshirani, Ryan J.
,
Rumack, Aaron
,
Rosenfeld, Roni
in
Earth Sciences
,
Engineering and Technology
,
Epidemics
2022
Distributional forecasts are important for a wide variety of applications, including forecasting epidemics. Often, forecasts are miscalibrated, or unreliable in assigning uncertainty to future events. We present a recalibration method that can be applied to a black-box forecaster given retrospective forecasts and observations, as well as an extension to make this method more effective in recalibrating epidemic forecasts. This method is guaranteed to improve calibration and log score performance when trained and measured in-sample. We also prove that the increase in expected log score of a recalibrated forecaster is equal to the entropy of the PIT distribution. We apply this recalibration method to the 27 influenza forecasters in the FluSight Network and show that recalibration reliably improves forecast accuracy and calibration. This method, available on Github, is effective, robust, and easy to use as a post-processing tool to improve epidemic forecasts.
Journal Article
A human judgment approach to epidemiological forecasting
2017
Infectious diseases impose considerable burden on society, despite significant advances in technology and medicine over the past century. Advanced warning can be helpful in mitigating and preparing for an impending or ongoing epidemic. Historically, such a capability has lagged for many reasons, including in particular the uncertainty in the current state of the system and in the understanding of the processes that drive epidemic trajectories. Presently we have access to data, models, and computational resources that enable the development of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.S. government have fostered an open and collaborative environment for the development of these technologies. The primary focus of these challenges has been to develop statistical and computational methods for epidemiological forecasting, but here we consider a serious alternative based on collective human judgment. We created the web-based \"Epicast\" forecasting system which collects and aggregates epidemic predictions made in real-time by human participants, and with these forecasts we ask two questions: how accurate is human judgment, and how do these forecasts compare to their more computational, data-driven alternatives? To address the former, we assess by a variety of metrics how accurately humans are able to predict influenza and chikungunya trajectories. As for the latter, we show that real-time, combined human predictions of the 2014-2015 and 2015-2016 U.S. flu seasons are often more accurate than the same predictions made by several statistical systems, especially for short-term targets. We conclude that there is valuable predictive power in collective human judgment, and we discuss the benefits and drawbacks of this approach.
Journal Article
Using Data-Driven Rules to Predict Mortality in Severe Community Acquired Pneumonia
by
Wu, Chuang
,
Clermont, Gilles
,
Rosenfeld, Roni
in
Adolescent
,
Algorithms
,
Artificial Intelligence
2014
Prediction of patient-centered outcomes in hospitals is useful for performance benchmarking, resource allocation, and guidance regarding active treatment and withdrawal of care. Yet, their use by clinicians is limited by the complexity of available tools and amount of data required. We propose to use Disjunctive Normal Forms as a novel approach to predict hospital and 90-day mortality from instance-based patient data, comprising demographic, genetic, and physiologic information in a large cohort of patients admitted with severe community acquired pneumonia. We develop two algorithms to efficiently learn Disjunctive Normal Forms, which yield easy-to-interpret rules that explicitly map data to the outcome of interest. Disjunctive Normal Forms achieve higher prediction performance quality compared to a set of state-of-the-art machine learning models, and unveils insights unavailable with standard methods. Disjunctive Normal Forms constitute an intuitive set of prediction rules that could be easily implemented to predict outcomes and guide criteria-based clinical decision making and clinical trial execution, and thus of greater practical usefulness than currently available prediction tools. The Java implementation of the tool JavaDNF will be publicly available.
Journal Article
Computational Characterization of Transient Strain-Transcending Immunity against Influenza A
2015
The enigmatic observation that the rapidly evolving influenza A (H3N2) virus exhibits, at any given time, a limited standing genetic diversity has been an impetus for much research. One of the first generative computational models to successfully recapitulate this pattern of consistently constrained diversity posits the existence of a strong and short-lived strain-transcending immunity. Building on that model, we explored a much broader set of scenarios (parameterizations) of a transient strain-transcending immunity, ran long-term simulations of each such scenario, and assessed its plausibility with respect to a set of known or estimated influenza empirical measures. We evaluated simulated outcomes using a variety of measures, both epidemiological (annual attack rate, epidemic duration, reproductive number, and peak weekly incidence), and evolutionary (pairwise antigenic diversity, fixation rate, most recent common ancestor, and kappa, which quantifies the potential for antigenic evolution). Taking cumulative support from all these measures, we show which parameterizations of strain-transcending immunity are plausible with respect to the set of empirically derived target values. We conclude that strain-transcending immunity which is milder and longer lasting than previously suggested is more congruent with the observed short- and long-term behavior of influenza.
Journal Article