Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,110 result(s) for "Rose, Rob"
Sort by:
Over in the wetlands : a hurricane-on-the-bayou story
Various wetland creatures, from alligators to egrets, enjoy what begins as a calm and peaceful day in the bayou, then prepare for and endure a passing hurricane, and finally settle in for a peaceful night.
Long-term effects of rotational prescribed burning and low-intensity sheep grazing on blanket-bog plant communities
1. The importance of peatlands is being increasingly recognized internationally for both the conservation of biodiversity and the provision of ecosystem services; strategies are being developed world-wide to help maintain their integrity. Prescribed burning has been highlighted as a threat with considerable debate over its use as it is perceived to produce a Calluna vulgaris monoculture and a decline in preferred peat-forming species. 2. We investigated the impact of prescribed burning on vegetation composition and diversity in a long-term experiment at Moor House NNR in northern England. The study comprised a comparison between no-burn reference plots last burned in ca. 1924 and an experiment where all plots were burned in 1954/5. Within the experiment, the effects of very light sheep grazing vs. no grazing and three burning rotations (no-burn since 1954/5, repeat-burning at 10- and 20-year intervals) were tested. 3. Calluna vulgaris and Hypnum jutlandicum cover and bryophyte species richness increased in the least-disturbed, no-burn reference plots, but bryophyte cover did not. Lichen diversity declined. 4. Within the formal experiment, low-intensity sheep grazing had little impact but there were substantive changes produced by the different burning rotations. There was divergence between the burning rotation treatments with the least-disturbed, no-burn treatment changing towards a C. vulgaris–H. jutlandicum community, whereas the most-disturbed 10-year rotation had a much greater abundance of both Eriophorum and Sphagnum spp. 5. Synthesis and applications. Our findings suggest that blanket-bog vegetation on peat responds to prescribed burning in a complex manner. Where burn return interval is long (> 20 years), C. vulgaris becomes dominant and there was no evidence that preferred peat-forming species (Eriophorum/Sphagnum) increased. Where burn return interval is short (10 years), E. vaginatum/Sphagnum abundance increased. We found no evidence to suggest that prescribed burning was deleterious to the abundance of peat-forming species; indeed, it was found to favour them. These results inform conservation management policy for blanket bogs in the UK and more generally for future wildfire-mitigation strategies on dwarf-shrub-dominated peatlands elsewhere. Some lessons for the management of long-term experimental studies are also discussed.
An “Escape Clock” for Estimating the Turnover of SIV DNA in Resting CD4+ T Cells
Persistence of HIV DNA presents a major barrier to the complete control of HIV infection under current therapies. Most studies suggest that cells with latently integrated HIV decay very slowly under therapy. However, it is much more difficult to study the turnover and persistence of HIV DNA during active infection. We have developed an \"escape clock\" approach for measuring the turnover of HIV DNA in resting CD4+ T cells. This approach studies the replacement of wild-type (WT) SIV DNA present in early infection by CTL escape mutant (EM) strains during later infection. Using a strain-specific real time PCR assay, we quantified the relative amounts of WT and EM strains in plasma SIV RNA and cellular SIV DNA. Thus we can track the formation and turnover of SIV DNA in sorted resting CD4+ T cells. We studied serial plasma and PBMC samples from 20 SIV-infected Mane-A*10 positive pigtail macaques that have a signature Gag CTL escape mutation. In animals with low viral load, WT virus laid down early in infection is extremely stable, and the decay of this WT species is very slow, consistent with findings in subjects on anti-retroviral medications. However, during active, high level infection, most SIV DNA in resting cells was turning over rapidly, suggesting a large pool of short-lived DNA produced by recent infection events. Our results suggest that, in order to reduce the formation of a stable population of SIV DNA, it will be important either to intervene very early or intervene during active replication.
Understanding System Complexity in the Non-Destructive Testing of Advanced Composite Products
Non-destructive testing (NDT) is a quality control measure designed to ensure the safety of products according to established variability thresholds. With the development of advanced technologies and a lack of formalised knowledge of the state-of-the-art, the National Composites Centre, Bristol, has identified that the increasing complexity of composite products will lead to some severe inspection challenges. To address the apparent knowledge gap and understand system complexity, a formulaic approach to introduce intelligence and improve the robustness of NDT operations is presented. The systemic development of a high-fidelity knowledge base (KB) involves the establishment of a capability matrix that maps material, component, and defect configuration to the capabilities and limitations of selected detection methods. Population and validation are demonstrated through the experimental testing of reference standards and evaluated against an assessment criteria. System complexity in ultrasonic testing operations focusses on capturing the inherent risks in inspection and the designation of evidence-based path plans for automation platforms. Anticipated deployment of the validated applicability data within the KB will allow for road-mapping of the inspection technique development and will provide opportunities for knowledge-based decision making. Moreover, the KB highlights the need for Design for Inspection, providing measurable data that the methodology should not be ignored.
Dung beetle assemblages, dung removal and secondary seed dispersal: data from a large-scale, multi-site experiment in the Western Palaearctic
By manipulating faeces during feeding and breeding, dung beetles (Coleoptera: Scarabaeidae) fulfil important ecosystem functions in terrestrial ecosystems throughout the world. In a pan-European multi-site experiment (MSE), we estimated the ecosystem functions of dung removal and secondary seed dispersal by differing combinations of dung beetle functional groups. Therefore, we classified dung beetles into five functional groups according to their body size and dung manipulation method: dwellers, large and small tunnelers, and large and small rollers. Furthermore, we set up a dung beetle sampling database containing all sampled dung beetles during the project. By identifying dung beetle specimens to the species level, we obtained a detailed insight into the dung beetle communities at each study location.By establishing experimental plots allowing and inhibiting specific combinations of functional groups in the local dung beetle assemblage from removing dung and seeds, we estimated the role of each group in dung removal and secondary seed dispersal during a 4-week period. We performed all experiments in grazed (semi-)natural grasslands, and used different dung types (cattle, horse, sheep, goat or red deer) to match the herbivore species grazing in close vicinity of each of the study areas. Simultaneously, we sampled dung beetle assemblages by using pitfalls baited with the same dung types as used in the experiments.This data paper documents two datasets collected in the framework of this MSE project. All the experiments took place between 2013 and 2016 at 17 study sites in 10 countries and 11 biogeographic zones. The entire dung beetle sampling dataset was published as a sampling event dataset at GBIF. The dataset includes the sampling results of all 17 study sites, which contain 1,050 sampling events and 4,362 occurrence records of 94 species. The second dataset contains the results of the dung removal and secondary seed dispersal experiments in which we used 11 experimental treatments and the five dung types mentioned above. This experimental results dataset holds all experimental results of the MSE project (11,537 records), and was published in the online data repository Zenodo.
Geographical separation of two Ulex species at three spatial scales: does competition limit species' ranges?
It is a common assumption that species' ranges are limited by their physiological tolerances to climatic factors, Biotic factors, such as competition, are rarely considered. We investigated the distributions of Ulex minor and U. gallii at three spatial scales from geographic ranges to individual heaths ‐ to examine whether the species are negatively associated, as predicted by the hypothesis that the ranges of the species are limited by competition with each other. Distribution maps for the British Isles and France (100 400 km2 survey units) show the two species have largely separated, but slightly overlapping ranges. A region of range overlap on the heaths of Dorset, southern England was mapped using 4 ha survey squares. There was strong negative association between the species, and the heaths could be divided into zones where one species was dominant. There was some indication of edaphic differences between the U. minor‐dominated zones and the U. gallii zones. The few heaths where the species co‐occurred were surveyed using 4 m2 quadrats placed along transects. Usually one species was widespread over the heath, while the other occurred in patches. The species were strongly negatively associated in all transects. Therefore, the two species showed strong negative associations at three mapping scales. Apparent co‐occurrences detected at one spatial scale largely disappeared when species were mapped at finer scales, emphasising the fractal nature of distributions. This provides evidence that the distributions of the two species are not independent and that they cannot coexist, and therefore that their ranges are limited by competition. Over their ranges, competitive superiority is probably determined by the climate. At the range boundaries in the region of overlap, climate is not important, but other physical factors such as edaphic conditions may determine the outcome of competition.
Functionally richer communities improve ecosystem functioning
Aim In several ecosystems, the diversity of functional species traits has been shown to have a stronger effect on ecosystem functioning than taxonomic diversity alone. However, few studies have explored this idea at a large geographical scale. In a multisite experiment, we unravelled the relationship between ecosystem function and functional completeness of species assemblages using dung beetles as a model group, focusing on dung removal and secondary seed dispersal. Location Seventeen grassland locations across the Western Palaearctic. Methods We used a randomized block design with different exclosure types to control the dung and seed removing activities of individual functional groups of the local dung beetle assemblage. We classified dung beetle species according to resource specialization and into functional groups based on dung processing behaviour (dwellers, tunnellers, rollers) and body size (small, large). Additionally, we assessed the role of other soil macro‐invertebrates. By sampling the dung beetle community and measuring the remaining dung and seeds after the experiment, the impact of each functional group was estimated. Results Dung beetle assemblages differed along a north–south and east–west gradient. Dwellers dominated northernmost sites, whereas at lower latitudes we observed more tunnellers and rollers indicating a functional shift. Resource specialists were more abundant in southern and eastern areas. Overall, functional group diversity enhanced dung removal. More dung (+46.9%) and seeds (+32.1%) were removed in the southern sites and tunnellers and rollers were more effective. At the northernmost sites, where tunnellers were scarce or absent, other soil macro‐invertebrates removed the majority of dung. Main conclusions The conservation of functionally complete dung beetle assemblages is crucial to maintain the ecosystem functions provided by dung beetles. Given the latitudinal variation in functional group diversity, it is reasonable to expect compositional changes due to climate change. These changes could lead to increased dung removal and a higher secondary seed dispersal rate in northern regions.
Carbon budgets of an upland blanket bog managed by prescribed fire
This study presents the carbon budget of a blanket bog, North Pennines, UK, subject to grazing and prescribed burning for vegetation management. The budget considers both fluvial and gaseous carbon fluxes and the following uptake and release pathways: dissolved organic carbon, particulate organic carbon, excess dissolved CO2, release of methane (CH4), net ecosystem respiration of CO2, and uptake of CO2 through primary productivity. Measurements of CH4 were not directly measured as part of this study but were estimated from hydroclimatic variables measured within the study. The results show that, if management combinations were extrapolated across the catchment, then over a 3 year period, the catchment would be a net source of carbon of between 62 and 206 gC m−2 yr−1. The action of both burning and grazing was to significantly decrease the magnitude of the carbon source relative to unburnt controls. Over the study period burnt sites were a mean source of approximately 117.8 gC m−2 yr−1 compared to unburnt sites with a mean source of 156.7 gC m−2 yr−1. Even when including the loss of carbon during the vegetation combustion, there are conditions under which the long‐term loss of carbon is less than if no burning had occurred. If total combustion of vegetation occurs, provided burning occurs at cycles longer than 32 years, then less carbon is predicted to be lost than in a no‐burn scenario.
The UK Environmental Change Network datasets – integrated and co-located data for long-term environmental research (1993–2015)
Long-term datasets of integrated environmental variables, co-located together, are relatively rare. The UK Environmental Change Network (ECN) was launched in 1992 and provides the UK with its only long-term integrated environmental monitoring and research network for the assessment of the causes and consequences of environmental change. Measurements, covering a wide range of physical, chemical, and biological “driver” and “response” variables are made in close proximity at ECN terrestrial sites using protocols incorporating standard quality control procedures. This paper describes the datasets (there are 19 published ECN datasets) for these co-located measurements, containing over 20 years of data (1993–2015). The data and supporting documentation are freely available from the NERC Environmental Information Data Centre under the terms of the Open Government Licence using the following DOIs. Meteorology Meteorology: https://doi.org/10.5285/fc9bcd1c-e3fc-4c5a-b569-2fe62d40f2f5 (Rennie et al., 2017a) Biogeochemistry Atmospheric nitrogen chemistry: https://doi.org/10.5285/baf51776-c2d0-4e57-9cd3-30cd6336d9cf (Rennie et al., 2017b) Precipitation chemistry: https://doi.org/10.5285/18b7c387-037d-4949-98bc-e8db5ef4264c (Rennie et al., 2017c) Soil solution chemistry: https://doi.org/10.5285/b330d395-68f2-47f1-8d59-3291dc02923b (Rennie et al., 2017d) Stream water chemistry: https://doi.org/10.5285/fd7ca5ef-460a-463c-ad2b-5ad48bb4e22e (Rennie et al., 2017e) Stream water discharge: https://doi.org/10.5285/8b58c86b-0c2a-4d48-b25a-7a0141859004 (Rennie et al., 2017f) Invertebrates Moths: https://doi.org/10.5285/a2a49f47-49b3-46da-a434-bb22e524c5d2 (Rennie et al., 2017g) Butterflies: https://doi.org/10.5285/5aeda581-b4f2-4e51-b1a6-890b6b3403a3 (Rennie et al., 2017h) Carabid beetle: https://doi.org/10.5285/8385f864-dd41-410f-b248-028f923cb281 (Rennie et al., 2017i) Spittle bugs: https://doi.org/10.5285/aff433be-0869-4393-b765-9e6faad2a12b (Rennie et al., 2018) Vegetation Baseline: https://doi.org/10.5285/a7b49ac1-24f5-406e-ac8f-3d05fb583e3b (Rennie et al., 2016a) Coarse grain: https://doi.org/10.5285/d349babc-329a-4d6e-9eca-92e630e1be3f (Rennie et al., 2016b) Woodland: https://doi.org/10.5285/94aef007-634e-42db-bc52-9aae86adbd33 (Rennie et al., 2017j) Fine grain: https://doi.org/10.5285/b98efec8-6de0-4e0c-85dc-fe4cdf01f086 (Rennie et al., 2017k) Vertebrates Frogs: https://doi.org/10.5285/4d8c7dd9-8248-46ca-b988-c1fc38e51581 (Rennie et al., 2017l) Birds (Breeding bird survey): https://doi.org/10.5285/5886c3ba-1fa5-49c0-8da8-40e69a10d2b5 (Rennie et al., 2017m) Birds (Common bird census): https://doi.org/10.5285/8582a02c-b28c-45d2-afa1-c1e85fba023d (Rennie et al., 2017n) Bats: https://doi.org/10.5285/2588ee91-6cbd-4888-86fc-81858d1bf085 (Rennie et al., 2017o) Rabbits and deer: https://doi.org/10.5285/0be0aed3-f205-4f1f-a65d-84f8cfd8d50f (Rennie et al., 2017p)