Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
134 result(s) for "Rosenblatt, Mark I."
Sort by:
VEGF-B selectively regenerates injured peripheral neurons and restores sensory and trophic functions
Significance Peripheral nerve injury is a major neurological disorder that can cause multiple motor and sensory disturbances. In this study we found that VEGF-B can be used as a previously unidentified therapeutic for treating peripheral nerve injury. We demonstrated that VEGF-B stimulated nerve regeneration and enhanced the recovery of both tissue sensation and the ability of nerves to enhance healing of innervated tissue. The physiologic relevance of VEGF-B is demonstrated by our findings showing that mice lacking VEGF-B have impaired nerve regeneration and that nerve injury resulted in increased endogenous expression of VEGF-B. We discover that VEGF-B induces strong elongation and branching of neurons and requires specific transmembrane receptors as well as activation of a complex intracellular signaling. VEGF-B primarily provides neuroprotection and improves survival in CNS-derived neurons. However, its actions on the peripheral nervous system have been less characterized. We examined whether VEGF-B mediates peripheral nerve repair. We found that VEGF-B induced extensive neurite growth and branching in trigeminal ganglia neurons in a manner that required selective activation of transmembrane receptors and was distinct from VEGF-A–induced neuronal growth. VEGF-B–induced neurite elongation required PI3K and Notch signaling. In vivo, VEGF-B is required for normal nerve regeneration: mice lacking VEGF-B showed impaired nerve repair with concomitant impaired trophic function. VEGF-B treatment increased nerve regeneration, sensation recovery, and trophic functions of injured corneal peripheral nerves in VEGF-B–deficient and wild-type animals, without affecting uninjured nerves. These selective effects of VEGF-B on injured nerves and its lack of angiogenic activity makes VEGF-B a suitable therapeutic target to treat nerve injury.
Semaphorin3A induces nerve regeneration in the adult cornea-a switch from its repulsive role in development
The peripheral sensory nerves that innervate the cornea can be easily damaged by trauma, surgery, infection or diabetes. Several growth factors and axon guidance molecules, such as Semaphorin3A (Sema3A) are upregulated upon cornea injury. Nerves can regenerate after injury but do not recover their original density and patterning. Sema3A is a well known axon guidance and growth cone repellent protein during development, however its role in adult cornea nerve regeneration remains undetermined. Here we investigated the neuro-regenerative potential of Sema3A on adult peripheral nervous system neurons such as those that innervate the cornea. First, we examined the gene expression profile of the Semaphorin class 3 family members and found that all are expressed in the cornea. However, upon cornea injury there is a fast increase in Sema3A expression. We then corroborated that Sema3A totally abolished the growth promoting effect of nerve growth factor (NGF) on embryonic neurons and observed signs of growth cone collapse and axonal retraction after 30 min of Sema3A addition. However, in adult isolated trigeminal ganglia or dorsal root ganglia neurons, Sema3A did not inhibited the NGF-induced neuronal growth. Furthermore, adult neurons treated with Sema3A alone produced similar neuronal growth to cells treated with NGF and the length of the neurites and branching was comparable between both treatments. These effects were replicated in vivo, where thy1-YFP neurofluorescent mice subjected to cornea epithelium debridement and receiving intrastromal pellet implantation containing Sema3A showed increased corneal nerve regeneration than those receiving pellets with vehicle. In adult PNS neurons, Sema3A is a potent inducer of neuronal growth in vitro and cornea nerve regeneration in vivo. Our data indicates a functional switch for the role of Sema3A in PNS neurons where the well-described repulsive role during development changes to a growth promoting effect during adulthood. The high expression of Sema3A in the normal and injured adult corneas could be related to its role as a growth factor.
Bone marrow mesenchymal stromal cells in a 3D system produce higher concentration of extracellular vesicles (EVs) with increased complexity and enhanced neuronal growth properties
Purpose Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have been demonstrated to possess great potential in preclinical models. An efficient biomanufacturing platform is necessary for scale up production for clinical therapeutic applications. The aim of this study is to investigate the potential differences in neuro-regenerative properties of MSC-derived EVs generated in 2D versus 3D culture systems. Method Human bone marrow MSCs (BM-MSCs) were cultured in 2D monolayer and 3D bioreactor systems. EVs were isolated using ultracentrifugation followed by size and concentration measurements utilizing dynamic light scattering (NanoSight) and by fluorescence staining (ExoView). Mouse trigeminal ganglia (TG) neurons were isolated from BALB/c mice and cultured in the presence or absence of EVs derived from 2D or 3D culture systems. Neuronal growth and morphology were monitored over 5 days followed by immunostaining for β3 tubulin. Confocal images were analyzed by Neurolucida software to obtain the density and length of the neurites. Results The NanoSight tracking analysis revealed a remarkable increase (24-fold change) in the concentration of EVs obtained from the 3D versus 2D culture condition. ExoView analysis showed a significantly higher concentration of CD63, CD81, and CD9 markers in the EVs derived from 3D versus 2D conditions. Furthermore, a notable shift toward a more heterogeneous phenotype was observed in the 3D-derived EVs compared to those from 2D culture systems. EVs derived from both culture conditions remarkably induced neurite growth and elongation after 5 days in culture compared to untreated control. Neurolucida analysis of the immunostaining images (β3 tubulin) showed a significant increase in neurite length in TG neurons treated with 3D- versus 2D-derived EVs (3301.5 μm vs. 1860.5 μm, P  < 0.05). Finally, Sholl analysis demonstrated a significant increase in complexity of the neuronal growth in neurons treated with 3D- versus 2D-derived EVs ( P  < 0.05). Conclusion This study highlights considerable differences in EVs obtained from different culture microenvironments, which could have implications for their therapeutic effects and potency. The 3D culture system seems to provide a preferred environment that modulates the paracrine function of the cells and the release of a higher number of EVs with enhanced biophysical properties and functions in the context of neurite elongation and growth. Highlights Extracellular vesicles (EV) derived from 2D and 3D bone marrow mesenchymal stromal cells (BM-MSCs) demonstrate different characterization phenotype. Heterogeneity and concentration of BM-MSCs-derived extracellular vesicles are highly impacted by the culture conditions. 3D-derived EVs can significantly enhance trigeminal nerves elongation and complexity compared to 2D-derived EVs. 3D culture conditions are highly efficient environment for upscale production of MSC-derived EVs with enhanced neuro-regeneration properties for corneal nerve regeneration.
International Chronic Ocular Graft-vs-Host-Disease (GVHD) Consensus Group: Proposed Diagnostic Criteria for Chronic GVHD (Part I)
The International Chronic Ocular GVHD Consensus Group held 4 working meetings to define new diagnostic metrics for chronic ocular graft-versus-host disease (GVHD). After considering the factors currently used to diagnose chronic ocular GVHD, the Consensus Group identified 4 subjective and objective variables to measure in patients following allogeneic hematopoietic stem cell transplantation (HSCT): OSDI, Schirmer's score without anesthesia, corneal staining and conjunctival injection. Each variable was scored 0–2 or 0–3, with a maximum composite score of 11. Consideration was also given to the presence or the absence of systemic GVHD. On the basis of their composite score and the presence or absence of systemic GVHD, patients were assigned to one of three diagnostic categories: NO, PROBABLE, or DEFINITE ocular GVHD. New diagnostic criteria for chronic ocular GVHD are presented by the Consensus Group. Validation studies are needed to identify the best combination of the proposed metrics to maximize diagnostic sensitivity and specificity.
Silk films with nanotopography and extracellular proteins enhance corneal epithelial wound healing
Corneal wound healing depends on extracellular matrix (ECM) and topographical cues that modulate migration and proliferation of regenerating cells. In our study, silk films with either flat or nanotopography patterned parallel ridge widths of 2000, 1000, 800 nm surfaces were combined with ECMs which include collagen type I (collagen I), fibronectin, laminin, and Poly- d -Lysine to accelerate corneal wound healing. Silk films with 800 nm ridge width provided better cell spreading and wound recovery than other size topographies. Coating 800 nm patterned silk films with collagen I proves to optimally further increased mouse and rabbit corneal epithelial cells growth and wound recovery. This enhanced cellular response correlated with redistribution and increase in size and total amount of focal adhesion. Transcriptomics and signaling pathway analysis suggested that silk topography regulates cell behaviors via actin nucleation ARP-WASP complex pathway, which regulate filopodia formation. This mechanism was further explored and inhibition of Cdc42, a key protein in this pathway, delayed wound healing and decreased the length, density, and alignment of filopodia. Inhibition of Cdc42 in vivo resulted in delayed re-epithelization of injured corneas. We conclude that silk film nanotopography in combination with collagen I constitutes a better substrate for corneal wound repair than either nanotopography or ECM alone.
The effect of decellularization protocols on characterizations of thermoresponsive and light-curable corneal extracellular matrix hydrogels
To compare the effects of two decellularization protocols on the characteristics of fabricated COrnea Matrix (COMatrix) hydrogels. Porcine corneas were decellularized with Detergent (De) or Freeze–Thaw (FT)-based protocols. DNA remnant, tissue composition and α-Gal epitope content were measured. The effect of α-galactosidase on α-Gal epitope residue was assessed. Thermoresponsive and light-curable (LC) hydrogels were fabricated from decellularized corneas and characterized with turbidimetric, light-transmission and rheological experiments. The cytocompatibility and cell-mediated contraction of the fabricated COMatrices were assessed. Both protocols reduced the DNA content to < 0.1 µg/mg (native, > 0.5 µg/mg), and preserved the collagens and glycosaminoglycans. The α-Gal epitope remnant decreased by > 50% following both decellularization methods. We observed more than 90% attenuation in α-Gal epitope after treatment with α-galactosidase. The thermogelation half-time of thermoresponsive COMatrices derived from De-Based protocol (De-COMatrix) was 18 min, similar to that of FT-COMatrix (21 min). The rheological characterizations revealed significantly higher shear moduli of thermoresponsive FT-COMatrix (300.8 ± 22.5 Pa) versus De-COMatrix 178.7 ± 31.3 Pa, p  < 0.01); while, this significant difference in shear moduli was preserved after fabrication of FT-LC-COMatrix and De-LC-COMatrix (18.3 ± 1.7 vs 2.8 ± 2.6 kPa, respectively, p  < 0.0001). All thermoresponsive and light-curable hydrogels have similar light-transmission to human corneas. Lastly, the obtained products from both decellularization methods showed excellent in vitro cytocompatibility. We found that FT-LC-COMatrix was the only fabricated hydrogel with no significant cell-mediated contraction while seeded with corneal mesenchymal stem cells ( p  < 0.0001). The significant effect of decellularization protocols on biomechanical properties of hydrogels derived from porcine corneal ECM should be considered for further applications.
Treatment with solubilized Silk-Derived Protein (SDP) enhances rabbit corneal epithelial wound healing
There is a significant clinical need to improve current therapeutic approaches to treat ocular surface injuries and disease, which affect hundreds of millions of people annually worldwide. The work presented here demonstrates that the presence of Silk-Derived Protein (SDP) on the healing rabbit corneal surface, administered in an eye drop formulation, corresponds with an enhanced epithelial wound healing profile. Rabbit corneas were denuded of their epithelial surface, and then treated for 72-hours with either PBS or PBS containing 5 or 20 mg/mL SDP in solution four times per day. Post-injury treatment with SDP formulations was found to accelerate the acute healing phase of the injured rabbit corneal epithelium. In addition, the use of SDP corresponded with an enhanced tissue healing profile through the formation of a multi-layered epithelial surface with increased tight junction formation. Additional biological effects were also revealed that included increased epithelial proliferation, and increased focal adhesion formation with a corresponding reduction in the presence of MMP-9 enzyme. These in vivo findings demonstrate for the first time that the presence of SDP on the injured ocular surface may aid to improve various steps of rabbit corneal wound healing, and provides evidence that SDP may have applicability as an ingredient in therapeutic ophthalmic formulations.
Therapeutic Strategies for Restoring Perturbed Corneal Epithelial Homeostasis in Limbal Stem Cell Deficiency: Current Trends and Future Directions
Limbal stem cells constitute an important cell population required for regeneration of the corneal epithelium. If insults to limbal stem cells or their niche are sufficiently severe, a disease known as limbal stem cell deficiency occurs. In the absence of functioning limbal stem cells, vision-compromising conjunctivalization of the corneal epithelium occurs, leading to opacification, inflammation, neovascularization, and chronic scarring. Limbal stem cell transplantation is the standard treatment for unilateral cases of limbal stem cell deficiency, but bilateral cases require the use of cultured non-limbal autologous stem cell or allogeneic limbal stem cell transplantation. Herein we review the current therapeutic utilization of limbal stem cells. We also describe several limbal stem cell markers that impact their phenotype and function and discuss the possibility of modulating limbal stem cells and other sources of stem cells to facilitate the development of novel therapeutic interventions. We finally consider several hurdles for widespread adoption of these proposed methodologies and discuss how they can be overcome to realize vision-restoring interventions.
Silk Film Topography Directs Collective Epithelial Cell Migration
The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography's edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization.
Mechanisms of Corneal Nerve Regeneration: Examining Molecular Regulators
Corneal nerve integrity is vital for maintaining ocular surface health and visual clarity, but damage from injury or disease can lead to pain, persistent epithelial defects, and even vision loss. A deeper understanding of how corneal nerves regenerate at the molecular level is key to developing therapies that restore both anatomical structure and function. In this review, we bring together current insights into the pathways that drive corneal nerve repair after injury. We outline the major signaling pathways that promote neuronal survival, axon extension, and nerve–epithelial interactions, along with evolving research around novel modulators that could improve repair outcomes. Although advances in imaging and molecular therapies have led to significant progress in promoting nerve regrowth, functional sensory recovery often lags. This gap in recovery emphasizes the need for research approaches that align anatomical restoration with sensory function. In this review, we aim to clarify the mechanisms underlying corneal nerve regeneration (and their intersections) and identify opportunities for improving patient outcomes.