Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
242
result(s) for
"Rosenfeld, Jill A."
Sort by:
Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation
2017
Of over 7000 patients referred to a diagnostic laboratory, 28% had diagnoses based on DNA sequencing, 5% of whom had two or more diagnoses. Their phenotypes could be better understood by considering whether the implicated genes affect independent biologic processes or organ systems.
Medical genetics focuses on the relationship between observed phenotypes and their underlying genotypes, modes of transmission, and risks of recurrence. Expected patterns of mendelian inheritance are often used to confirm the identification of disease genes, and deviations from mendelian expectations have led to the discovery of more complicated genetic underpinnings of disease (Fig. S1 in the Supplementary Appendix, available with the full text of this article at NEJM.org).
1
–
8
Multiple (or dual) molecular diagnoses involve more than one clinical diagnosis and more than one genetic locus (Figure 1), each segregating independently.
Diagnostic whole-exome sequencing affords opportunities for providing insights into relationships . . .
Journal Article
Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing
by
Yépez, Vicente A.
,
Craigen, William J.
,
Rosenfeld, Jill A.
in
Adolescent
,
Adult
,
Biomedical research
2021
BACKGROUNDTranscriptome sequencing (RNA-seq) improves diagnostic rates in individuals with suspected Mendelian conditions to varying degrees, primarily by directing the prioritization of candidate DNA variants identified on exome or genome sequencing (ES/GS). Here we implemented an RNA-seq-guided method to diagnose individuals across a wide range of ages and clinical phenotypes.METHODSOne hundred fifteen undiagnosed adult and pediatric patients with diverse phenotypes and 67 family members (182 total individuals) underwent RNA-seq from whole blood and skin fibroblasts at the Baylor College of Medicine (BCM) Undiagnosed Diseases Network clinical site from 2014 to 2020. We implemented a workflow to detect outliers in gene expression and splicing for cases that remained undiagnosed despite standard genomic and transcriptomic analysis.RESULTSThe transcriptome-directed approach resulted in a diagnostic rate of 12% across the entire cohort, or 17% after excluding cases solved on ES/GS alone. Newly diagnosed conditions included Koolen-de Vries syndrome (KANSL1), Renpenning syndrome (PQBP1), TBCK-associated encephalopathy, NSD2- and CLTC-related intellectual disability, and others, all with negative conventional genomic testing, including ES and chromosomal microarray (CMA). Skin fibroblasts exhibited higher and more consistent expression of clinically relevant genes than whole blood. In solved cases with RNA-seq from both tissues, the causative defect was missed in blood in half the cases but none from fibroblasts.CONCLUSIONSFor our cohort of undiagnosed individuals with suspected Mendelian conditions, transcriptome-directed genomic analysis facilitated diagnoses, primarily through the identification of variants missed on ES and CMA.TRIAL REGISTRATIONNot applicable.FUNDINGNIH Common Fund, BCM Intellectual and Developmental Disabilities Research Center, Eunice Kennedy Shriver National Institute of Child Health & Human Development.
Journal Article
Estimates of penetrance for recurrent pathogenic copy-number variations
by
Cuckle, Howard
,
Eichler, Evan E.
,
Shaffer, Lisa G.
in
631/208/726/649/2157
,
631/208/727/2000
,
692/699
2013
Although an increasing number of copy-number variations are being identified as susceptibility loci for a variety of pediatric diseases, the penetrance of these copy-number variations remains mostly unknown. This poses challenges for counseling, both for recurrence risks and prenatal diagnosis. We sought to provide empiric estimates for penetrance for some of these recurrent, disease-susceptibility loci.
We conducted a Bayesian analysis, based on the copy-number variation frequencies in control populations (n = 22,246) and in our database of >48,000 postnatal microarray-based comparative genomic hybridization samples. The background risk for congenital anomalies/developmental delay/intellectual disability was assumed to be ~5%. Copy-number variations studied were 1q21.1 proximal duplications, 1q21.1 distal deletions and duplications, 15q11.2 deletions, 16p13.11 deletions, 16p12.1 deletions, 16p11.2 proximal and distal deletions and duplications, 17q12 deletions and duplications, and 22q11.21 duplications.
Estimates for the risk of an abnormal phenotype ranged from 10.4% for 15q11.2 deletions to 62.4% for distal 16p11.2 deletions.
This model can be used to provide more precise estimates for the chance of an abnormal phenotype for many copy-number variations encountered in the prenatal setting. By providing the penetrance, additional, critical information can be given to prospective parents in the genetic counseling session.
Genet Med 2013:15(6):478–481
Journal Article
Integrative analysis of transcriptome dynamics during human craniofacial development identifies candidate disease genes
2023
Craniofacial disorders arise in early pregnancy and are one of the most common congenital defects. To fully understand how craniofacial disorders arise, it is essential to characterize gene expression during the patterning of the craniofacial region. To address this, we performed bulk and single-cell RNA-seq on human craniofacial tissue from 4-8 weeks post conception. Comparisons to dozens of other human tissues revealed 239 genes most strongly expressed during craniofacial development. Craniofacial-biased developmental enhancers were enriched +/− 400 kb surrounding these craniofacial-biased genes. Gene co-expression analysis revealed that regulatory hubs are enriched for known disease causing genes and are resistant to mutation in the normal healthy population. Combining transcriptomic and epigenomic data we identified 539 genes likely to contribute to craniofacial disorders. While most have not been previously implicated in craniofacial disorders, we demonstrate this set of genes has increased levels of de novo mutations in orofacial clefting patients warranting further study.
Craniofacial disorders are among the most common congenital defects. Here, the authors examined the genetic causes of non-syndromic craniofacial disorders during human development through analysis of gene expression and epigenomics.
Journal Article
A copy number variation morbidity map of developmental delay
by
Alexander, Nora
,
Hummel, Marybeth
,
Hamid, Rizwan
in
631/1647/1513/1382
,
631/208/2489/144
,
692/700/1720
2011
Evan Eichler and colleagues analyze copy number variation in 15,767 children with intellectual disability, developmental delay, congenital birth defects and/or other related phenotypes. They identify 59 likely pathogenic CNV regions, including 14 new candidate regions, and estimate that ~14% of disorders in this sample collection are caused by large CNVs.
To understand the genetic heterogeneity underlying developmental delay, we compared copy number variants (CNVs) in 15,767 children with intellectual disability and various congenital defects (cases) to CNVs in 8,329 unaffected adult controls. We estimate that ∼14.2% of disease in these children is caused by CNVs >400 kb. We observed a greater enrichment of CNVs in individuals with craniofacial anomalies and cardiovascular defects compared to those with epilepsy or autism. We identified 59 pathogenic CNVs, including 14 new or previously weakly supported candidates, refined the critical interval for several genomic disorders, such as the 17q21.31 microdeletion syndrome, and identified 940 candidate dosage-sensitive genes. We also developed methods to opportunistically discover small, disruptive CNVs within the large and growing diagnostic array datasets. This evolving CNV morbidity map, combined with exome and genome sequencing, will be critical for deciphering the genetic basis of developmental delay, intellectual disability and autism spectrum disorders.
Journal Article
Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially
by
Wierenga, Klaas J.
,
Eldomery, Mohammad K.
,
Rosenfeld, Jill A.
in
Abnormalities
,
Alleles
,
Animals
2017
Dominant mutations in CACNA1A, encoding the α-1A subunit of the neuronal P/Q type voltage-dependent Ca2+ channel, can cause diverse neurological phenotypes. Rare cases of markedly severe early onset developmental delay and congenital ataxia can be due to de novo CACNA1A missense alleles, with variants affecting the S4 transmembrane segments of the channel, some of which are reported to be loss-of-function. Exome sequencing in five individuals with severe early onset ataxia identified one novel variant (p.R1673P), in a girl with global developmental delay and progressive cerebellar atrophy, and a recurrent, de novo p.R1664Q variant, in four individuals with global developmental delay, hypotonia, and ophthalmologic abnormalities. Given the severity of these phenotypes we explored their functional impact in Drosophila. We previously generated null and partial loss-of-function alleles of cac, the homolog of CACNA1A in Drosophila. Here, we created transgenic wild type and mutant genomic rescue constructs with the two noted conserved point mutations. The p.R1673P mutant failed to rescue cac lethality, displayed a gain-of-function phenotype in electroretinograms (ERG) recorded from mutant clones, and evolved a neurodegenerative phenotype in aging flies, based on ERGs and transmission electron microscopy. In contrast, the p.R1664Q variant exhibited loss of function and failed to develop a neurodegenerative phenotype. Hence, the novel R1673P allele produces neurodegenerative phenotypes in flies and human, likely due to a toxic gain of function.
Journal Article
Clinical Diagnosis by Whole-Genome Sequencing of a Prenatal Sample
by
Hussain, Naveed
,
Pereira, Shahrin
,
Blumenthal, Ian
in
Adult
,
Amniocentesis
,
Biological and medical sciences
2012
Translocation of chromosomes can result in disruption of genes. In this case report, a sequencing approach was used to identify the cause and effect of a translocation within 13 days, a period consistent with use of the approach in prenatal diagnosis.
Deep sequencing of the whole genome holds diagnostic promise but is currently thought to be impractical for routine prenatal care. In contrast, large-insert mate-pair, or jumping-library, sequencing provides a tractable approach for immediate clinical application and could complement conventional prenatal diagnostics. The risk of major structural birth defects among live births in the United States is approximately 3%
1
and is associated with inherited or de novo genetic rearrangements and mutations as well as with maternal factors, such as advanced age, certain clinical conditions, and exposure to teratogenic factors. Approximately 1 in 2000 prenatal cases analyzed with conventional karyotyping has a . . .
Journal Article
Behavioral screening reveals a conserved residue in Y-Box RNA-binding protein required for associative learning and memory in C. elegans
by
Brandel, Katie L.
,
Vijayakumar, Priyadharshini
,
Arey, Rachel N.
in
Animals
,
Associative learning
,
Behavior
2024
RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C . elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C . e legans Y -Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y - B o x (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to promote memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1 , and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.
Journal Article
Delineation of phenotypes and genotypes related to cohesin structural protein RAD21
2020
RAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype–phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype–phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation.
Journal Article
Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader–Willi syndrome
by
Thompson, Regina
,
Duker, Angela L
,
Bawle, Erawati V
in
631/208/1405
,
631/208/2489/144
,
631/337/384/521
2010
Prader–Willi syndrome (PWS) is a neurobehavioral disorder manifested by infantile hypotonia and feeding difficulties in infancy, followed by morbid obesity secondary to hyperphagia. It is caused by deficiency of paternally expressed transcript(s) within the human chromosome region 15q11.2. PWS patients harboring balanced chromosomal translocations with breakpoints within small nuclear ribonucleoprotein polypeptide N (
SNRPN
) have provided indirect evidence for a role for the imprinted C/D box containing small nucleolar RNA (snoRNA) genes encoded downstream of
SNRPN
. In addition, recently published data provide strong evidence in support of a role for the snoRNA SNORD116 cluster (HBII-85) in PWS etiology. In this study, we performed detailed phenotypic, cytogenetic, and molecular analyses including chromosome analysis, array comparative genomic hybridization (array CGH), expression studies, and single-nucleotide polymorphism (SNP) genotyping for parent-of-origin determination of the 15q11.2 microdeletion on an 11-year-old child expressing the major components of the PWS phenotype. This child had an ∼236.29 kb microdeletion at 15q11.2 within the larger Prader–Willi/Angelman syndrome critical region that included the SNORD116 cluster of snoRNAs. Analysis of SNP genotypes in proband and mother provided evidence in support of the deletion being on the paternal chromosome 15. This child also met most of the major PWS diagnostic criteria including infantile hypotonia, early-onset morbid obesity, and hypogonadism. Identification and characterization of this case provide unequivocal evidence for a critical role for the SNORD116 snoRNA molecules in PWS pathogenesis. Array CGH testing for genomic copy-number changes in cases with complex phenotypes is proving to be invaluable in detecting novel alterations and enabling better genotype–phenotype correlations.
Journal Article